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PREFACE.

OO many questions which necessarily excite our interest and

curiosity are discussed in the dynamics of a particle that

this subject has always been a favourite one with students. How,
for example, is it that by observing the motion of a pendulum we
can tell the time of the rotation of the earth, or knowing this,

how is it that we can deduce the latitude of the place ? Why does

our earth travel round the sun in an ellipse and what would be

the path if the law of gravitation were different? Would any
other law give a closed orbit so that our planet might

undisturbed) repeat the same path continually? Is there a

-tiii,
r medium which is slowly but continually bringing our

orbit nearer to the sun '. What would be the path of a part;

in a system of two centres of force ? When a comet passes close

to a planet does it carry with it in its new orbit some tokens

to prove its id-nti

Su'-li problems as these (which are merely examples) excite

our curiosity at the very beginning of the subject. When we

ly the replies we find new objects of interest. Beginning at

the elementary resolutions of the forces we are led on from one

generalization to another. We presently arrive at Lagrange's

general method, by which when a single fun. -n..n < worthily called

r his great name) has been found we can write down, in

any kind of coordinates, all the equations of motion cleared of

unknown reactions. A littl.- further on we find Jacobi's method
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by which the whole solution of a dynamical problem can be made

to depend on a single integral.

The last word has not yet been said on these problems. The

student finds as he proceeds much left to discover and many new

questions to ask.

When we extend our studies so as to include the planetary

perturbations and to take account of the finite size of the

bodies the mathematical difficulties are much increased. In the

dynamics of a particle we confine ourselves to simpler problems

and easier mathematics.

As the subject of dynamics is usually read early in the

mathematical course, the student cannot be expected to master

all its difficulties at once. In this treatise the parts intended for

a first reading are printed in large type and the student is advised

to pass over the other parts until they are referred to later on.

The same problem may be attacked on many sides and we

therefore have several different ways of finding a solution. In

what follows the most elementary method has in general been

put first, other solutions being given later on. For the sake of

simplicity they have also generally been treated first in two

dimensions. In these ways the difficulties of dynamics are

separated from those of pure geometry and it is hoped that

both difficulties may thus be more easily overcome.

Some of the examples have been fully worked out, on others

hints have been given. Many of these have been selected from

the Tripos and College papers in order that they may the better

indicate the recent directions of dynamical thought.

I cannot conclude without thanking Mr Dickson of Peterhouse.

He has kindly assisted me in correcting most of the proofs and

has given material aid by his verifications and suggestions.

EDWARD J. ROUTH.

PETERHOUSE,

July, 1898.
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ERRATUM.

page 155, line 15.

for
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CHAPTER I.

Velocity and Acceleration.

1. THE science of dynamics is divided into two parts. In one

the geometrical circumstances of the motion are considered apart
from the physical causes of that motion. In the other the mode
in which the motion is produced by the action of forces is investi-

gated. The first is usually called kinematics, the second is called

sometimes kinetics and sometimes dynamics.

2. Let us consider the geometrical motion of a point on a

given curve. The motion is said to be uniform when equal spaces
are described in any two equal times. The space described in any

of time measures the velocity.

The word "any" in this definition is important. If all the

- described in successive units of time were equal, the motion

n. 1 not be uniform. For example, the hands of a clock move
over equal spaces in successive seconds, but in some clocks each

space is described by a jump at the end of each second.

In discussing the geometry of the motion, the time is regarded
as the independent variable. It is merely some continual Iv in-

creasing quantity. So far as our present purpose is concerned,

we may suppose that the time is measured by the space described

by some standard point moving in a straight line always in the

same direction.

Let s be the distance at the time t of a point P nmuiiK
i inly on a curve measured along the arc from some fixed

<>n tli.- curve. Let s be the arc-distance at the time (,.

v is the space described in a unit of time, the arc * ,

K. H. 1
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described in t 1 units of time is given by s SQ v (t 1
).

This

leads to the converse equation, in uniform motion the velocity is

equal to the space described in any time divided by that time.

3. When all the arcs described in equal times are not equal,

the velocity is variable. By the principles of the differential

calculus we consider the arqs described in infinitely short times.

The point being in any position P at the time t, let Ss be the arc

described in a following interval of time St. If this arc were

described uniformly the velocity would be Ss/St. The limiting

ds
value when &t is indefinitely small is v -rr. This may be de-

fined to be the velocity in the position P. This equation is

usually expressed in the following words.

The velocity of a point when variable is measured by the space

or arc which would be described in a unit of time if the point were

to move uniformly with the velocity it had at the moment under

consideration.

It is worth while to give a more formal proof of the important equation v=

Let, as before, ds be the arc described in the next interval 8t. Let vlt v.2 be the

greatest and least velocities of the point in that interval. The space ds must lie

between v^St and v
25t, and therefore ds/8t must lie between v

l
and vz . In the limit

Vj and v2 become equal to each other and therefore each is equal to dsjdt. This

therefore must be the value of v.

4. Parallelogram of velocities. Velocities may be com-

pounded by the parallelogram law. Let a point P move with a

uniform velocity u along a finite

straight line OA and arrive at A
at the end of a given time, then

OP = ut. Let the straight line

OA move, always remaining

parallel to itself, with a uniform

velocity v and come into the position BO in the same time. It

is evident, from the properties of similar figures, that the point P
has described the diagonal OC of the parallelogram, two adjacent

sides of which are OA and OB. The two velocities u, v are

proportional to the lengths of the straight lines OA and OB, and

are evidently represented by those lines in direction and magni-

tude. When therefore a particle moves with two simultaneous

velocities represented in direction and magnitude by the straight
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v OA, OB, its motion is the same as if it were moved with a
>?e velurit'i represented in direct < / magnitude by the

I OC of the parallelogram constructed on OA, OB as sides.

5. This rule is the same as that given in Statics for com-

pounding forces which act at the same point. Hence all the rules

of Statics, which are derived from the parallelogram of forces, will

also apply to velocities.

We may therefore infer the triangle of velocities, and all the

various rules for resolving and compounding velocities, both by

rectangular and oblique resolutions.

6. Moment of a velocity. The moment of a velocity about a

jfint maybe defined in the same way as the moment of a force.

Let a point P be moving with a velocity v in a direction repre-

sented by the straight line APB. Let CN=p be the perpendicular
drawn from any point C on the straight line APB. The moment

nf the velocity v about. C is then defined to be equal to vp.

Using the same proof as that adopted in Statics, we infer that

the moment of tlie velocity of a point about any straight line is

1 1 to the sum of the moments of its components.

7. This theorem enables us to express the moment of the

velocity about the origin in several different forms, all of which

are in common use.

Let a point P move along a curve. It is proved in Art. 12

t the polar components of the velocity are drfdt and reW/ctt;

iimiin-iits of these about the origin are respectively zero and
lift

V dt. The moment of the velocity is therefore r*
{i

In th* same way, the Cartesian components being dx/dt and

t<!.i~-y 4*

Lastly let A be the polar area bounded by the path.

ving radius vector r and any fixed radius vector. It is clear

tli.it pds is twice the area dA traced out by the radius vector.

oft h velocity about the origin is jw- 2 .

a. The definition given above is strictly the moment of the velocity about a

straight line drawn through C perpendicular to the plane containing G* and the

12
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straight line APB. When we require the moment of the velocity of a point moving

along AB about any straight line CD which is inclined to the plane CAB, we use

the same extended definition as in Statics.

Let MN be the shortest distance between AB and CD ; resolve the velocity v

along AB into two components, one along Nz parallel to CD and the other along Ny
perpendicular to CD. The former is v cos 6, the

latter v sin 0, where 6 is the angle contained by
AB and CD. The moment of the former is

denned to be zero, the moment of the latter is

v sin 6 .p where p = MN.

If a point move along AB with a velocity v,

the moment of that velocity about CD is vp sin 0,

where p is the shortest distance between AB and

CD and is the angle contained by those lines.

The symmetry of this result shows that the

moment about AB of a velocity along CD is

the same as that about CD of an equal velocity along AB.

9. Ex. Given the two straight lines x-f_y-g_z-h x-f_= &c., where

X, /j., v; X', &c. are the direction cosines of the two lines. A particle is moving

along one of them; prove that the moment of the

velocity about the other is vi, where i is the deter-

minant in the margin.

/-/', 9-9', h-

X
//,

v

X' if v'

10. Relative velocity. Two points P, Q are moving along
two straight lines AB, CD with velocities u

t
v. It is required to

find their relative velocity.

Let any number of bodies be situated within a space and

let that space be moved carrying the bodies with it (as in a

railway carriage); it is evident that the relative positions of

the bodies are unchanged. If then we impress on both the

points P, Q a, velocity equal and opposite to that of one of them,

say P, the relative positions and motions are unaltered. The

point P is now at rest and the velocity of Q is the resultant of

its own velocity, viz. v, and the reversed velocity, viz. u, of P.

To find the relative velocity of Q with regard to P, we compound
the actual velocity of Q with the reversed velocity ofP according to

the parallelogram law.

Ex. A circle is rotated in its own plane about a point in its circumference with

an angular velocity ta and a point P moves on the circle in the opposite direction

with angular velocity 2w relative to the circle. Prove that P moves in a straight

line and find its velocity. [Coll. Exam. 1896.]
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11. Coordinate velocities. Let P, P be the positions of a

point moving on a curve APP at the times t and t + dt re-

spectively. Let

OM=xt
MP = y

be the coordinates of P
;
OM',

UT those of P. Let PL,
drawn parallel to Ox, cut

1"W in L, then

PL = dx, LP =
dy.

By the triangle of veloci- / 37 M'

\ he sides PZ, LP' of the

triangle PZP7

represent the oblique components of velocity on

the same scale that PP' represents the resultant velocity. The

components of velocity are therefore PL/dt and PL/dt If then

(i point move on a curve, and its coordinates are x, yt the Cartesian

dx , dy
/>onents of its velocity are equal to

-j-
and -*-

.

12. Let PH be a perpendicular drawn from P on OP. The

sides of the triangle PHP will ultimately represent on the same

scale the component velocities perpendicular and parallel to the

radius vector OP. These components are therefore PH/dt and

JlP'/dt. If OP = r and the angle P0x = we know by

uentary principles of the differential calculus ih&t, PH ** rd0

and HP' = dr ultimately. The components of velocity along and

perpentti'.-'il'ir to the radium vector are therefore -jj
and r-r- .

13. Let Q be another point whose coordinates are ', y.

ponents of its velocity are dx'jdt and dy/dt. To find the

iponent velocities of Q relative to P we follow the rule of

Art. 10. Reversing the component velocities of P and ad<l

th. rteoltfl to those of Q, it is clear that the component relative

dx dx
velor:

J -^ and
^g J-

We may put the argument in another form. Let {, ij, be the ooordinatM of Q
: red to axes having their origin at the moving point /, their dirtctiooi rtmain-

. arallel to the original axes. The component relative velocities are then d^dt

But since $=*'-*, i=y'-y, we arrive by differentiation at th

results as before.
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14. Ex. 1. The component velocities of a point in the directions of two axes

are 2at and 2bt + /3. Prove that the path is a parabola whose axis is parallel to

ay= bx.

We have dxjdt= 2at t .: x=at2+ A. Similarly y may be found. Eliminating
first f

2 and then t, the path follows at once.

Ex. 2. The component velocities parallel to the axes of x and y respectively

are ax and by + /S. Prove that the path is (by + /9)
a= Axb

.

Ex. 3. The polar components of velocity parallel and perpendicular to the

radius vector are 2a0 and br. Prove that the path is bra62 + A.

Ex. 4. If a particle be moving in a hypocycloid with velocity M, and v, V
represent the velocities of the centre of curvature and the centre of the generating

circle corresponding to the position of the particle, prove that

ua v9 4F2

(c-6)
2 +

(c + 6)2-(c-6)2

c being the distance between the centres of the generating circles, and b the radius

of the moving circle. [Math. Tripos.]

15. Acceleration. This word is used to express the rate at

which the velocity is increasing. It may be either uniform or

variable.

If a point move in such a manner that the increments of velocity

gained in any equal times are the same in direction and equal in

magnitude, the acceleration is said to be uniform. The increment

of velocity in each unit of time measures the magnitude of the

acceleration.

16. First, let the point move in a straight line. Let v be the

velocity at any time tQ ;
after a unit of time has elapsed, let VQ +f

be the velocity. After a second unit of time the velocity must

be v + 2/, because equal increments are gained in equal times.

Hence after t 1 units of time the velocity has increased by

f(t t ).
If v be the velocity at the time t, we have

v = v +f(t-t ).

The quantity/is the acceleration.

17. If the point does not move in a straight line the explanation

is only slightly altered. Let Oy represent the direction in which

the constant increments of velocity are given to the point, and

let Ox be the direction of motion at the time t = tQ . Let u
,
v

be the components of the velocity in the directions of the axes

Ox and Oy respectively at the time t
Q

. After a unit of time has

elapsed the component of velocity parallel to Oy is vQ +f, but
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that parallel to Ox is unchanged because no velocity has been
added in that direction. After t t units of time, th'e component
of velocity parallel to Oy is v +f(t-t<>\ while that parallel to Ox
is still u . If u, v are the components of velocity at the time t,

we have

The magnitude of the acceleration is /, and its direction is Oy.

18. When the increments of velocity in equal times are

unequal in magnitude, or not the same in direction, the accelera-

tion is said to be variable. To obtain a measure we follow the

method adopted to measure variable velocity.

Acceleration ivhen uniform is measured by the velocity generated
i "nit of time. When variable, the acceleration at any instant

is measured by the velocity which would be generated in the next

unit of time if the acceleration had remained constant in magnitude

"/ that interval and faced in direction.

19. To find the equations of motion of a point moving in a
'tlit line with a variable acceleration f.

Let v and v + dv be the velocities at the times t and t + eft.

Assuming the principles of the differential calculus, dv being
the increment in the time dt, it follows by a simple proportion
that dvfdt is the velocity which would be added in a unit of timr,

if the acceleration had remained constant. Hence, by Art 16,

/-<*/<&
The argument is usually put into a more elementary form. Let 8c be the

velocity generated in the time St. Let /, , /a be the greatest and least accelerations

of the particle during the interval St. Then since the actual rate at which the

velocity is increasing is always less than the one and greater than the other, the

velocity added is less than /, and greater than f.,St. In the limit /, and /, coin-

cide and we have f=dv}dt.

20. Let the geometrical position of the point at the time t

be determined by its distance * from a fixed point in the path.

Let v be the velocity, /the acceleration, then

</s f dv d*s dvm
dt' ^'S'dfc-'S'

All these expressions for the acceleration are of great importance.

21 \Ve notice that velocity and acceleration are dynamical

for the first and second differential coefficients of $ with
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regard to the independent variable t. If the third differential

coefficient were required, we should use some such name as

the hyper-acceleration, but this extension is not necessary to

dynamics.

22. It appears that acceleration bears the same general
relation to velocity that velocity bears to space. When a point

moves in a straight line the velocity is the rate of increase of the

space, the acceleration is the rate of increase of the velocity.

23. Just as velocity is positive or negative according as the

space measured in the positive direction is increasing or decreasing,

so acceleration is positive or negative according as the velocity is

increasing or decreasing. A negative acceleration is sometimes

called a retardation.

24. To find the motion of a point P moving in a straight line

with a uniform acceleration/.

Let the position of the point at the time t = tQ be given by
s = s

,
and let v be the velocity. Since/= d^s/df

2

,
we have

v = ds/dt=ft + A.

Hence v =fiQ + A,

and V =f(t-t ) + v .

Integrating again, since v = ds/dt,

s = i/(
- Q* + v t + B.

Hence SQ = v t 4- B, and therefore

25. The three fundamental formulae of elementary kine-

matics follow from this result. If the point start from the position

s = at the time t = 0,

V=ft + V0)

V2 =
2/6" -\ V,\

26. Ex. 1. A particle describes a space in time t with a uniform accelera-

tion, the velocities at the beginning and end of this period being v and v. Prove

that s=^(v + v)t. Notice that the coefficient of t is the mean of the two

velocities.
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J. A particle moves from rest with a uniform acceleration. Prove that the

average velocity is half or two-thirds of the final velocity, according as the time or

the space is divided into an infinite number of equal portions and the average
taken with regard to these. [St John's Coll., 1895.]

A.r. 3. Two points P, Q move on a straight line AB. The point P starts from

A iu the direction AH with velocity u and acceleration /, and at the same time Q
starts from B in the direction HA with velocity u' and acceleration /'; if they pass
one another at the middle point of AB and arrive at the other ends of AB with

equal velocities, prove that (u + u') (/-/') = 8 (/u' -fit). [Coll. Exam. 1896. ]

1. A heavy particle, projected horizontally on a smooth table with

velocity v, is reduced to rest by the resistance of the air after describing a space .

Supposing the resistance of the air to be a uniform force, prove that, when the

particle is projected vertically upwards with any velocity, the squares of the times

of ascent and descent to the point of projection are in the ratio 2g$
- r* to 2gt + r1.

">. A particle is projected vertically upwards from a point A. If the

resistance of the air were constant and equal to ng, where n is less than unity,

prove that the times of ascent and descent are as x/(l
-

n) : v/(l + n).

'. A particle is projected vertically upwards in vacuo from a given

point P. Prove that the product of the times of passing through another given

point Q is independent of the velocity of projection from P.

7. Two particles P, P' starting simultaneously from the points A, A' with

initial velocities u, u', move in the straight line A A' with accelerations /, /'. If

v, v' are their velocities when the distance PP' exceeds the initial distance A A' by

I, tlu-n

(t>'-t>)'=(u'-u) + 2(/'-/).
See Arts. 10 and 39.

27. A'.r . A point P, at any given moment, is in the position O moving in the

direction Ox with a velocity u. A uniform acceleration / is given to it in the

direction Oy. It is required to exhibit geometrically the position and direction of

motion after t seconds.

To find the direction of motion we measure lengths OA , OB along Ox, Oy to

represent on any scale the velocities u and ft respectively. The direction of motion

after t seconds is parallel to the diagonal 01) of the parallelogram AOB.

To find the position of the point we measure lengths equal to the spaoes, vit.

: lie diagonal of EOF, the point is at O moving in a

ion parallel to OD.

ti.'n we compound the vtl tittd the petition

we compound the tpacct.

28. The parallelogram of acceleration!. Th> th.

follows at once from the parallelogram of velocities. Let a p
be moving in any <lnv<Min at the time t with <

ng to the figure of Art. 4, let OA, OB represent

<lmTti"ii and ina^iiitiuli- t \v. uniform accelerations given to th-

u by definition OA, OB represent the t\\ ities

given to the point per unit of time. By the parallelograin
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velocities the diagonal 00 of the parallelogram constructed on

OA, OB represents the resultant increment of velocity per unit

of time. The point is therefore uniformly accelerated, and the

acceleration is represented in direction and magnitude by 00.

The actual velocity at the time t + t' (if required) could be

found by compounding the velocity at the time t, either with

both the components OA, OB, each multiplied by t'
t
or with

their resultant after multiplication by t'.

29. Hodograph. Let a point move in a curve and let P be its position at any
time t. From the origin draw a straight line OH to represent in direction and

magnitude the velocity v at P. Then OH
is parallel to the tangent at P and its

length is equal to KV, where K is an arbitrary

constant introduced to show the scale on

which OH represents the velocity.

As the point travels from P along its

path, the point H describes a second curve

which is called the hodograph of the first.

Let P, P' be two positions of the point at the times , t + dt
;
H

,
H' the corre-

sponding points on the hodograph. Since OH, OH' represent the velocities at

P, P' in direction and magnitude, the third side HH '

of the triangle HOH' must

represent in direction and magnitude the velocity given to the particle in the time

dt. It follows by a simple proportion that HH'/dt represents the velocity which

would have been added to the velocity at P if the acceleration had remained

constant for a unit of time.

The tangent at H therefore represents the acceleration in direction and the ratio

of an elementary arc HH' to the time dt of describing it measures the magnitude of

the acceleration on the same scale that the radius vector OH represents the velocity.

In this way the hodograph represents to the eye the motion of a point on a curve.

In general language, the radius vector represents the velocity, the arc gives the

acceleration. If r is the radius vector and a the arc BH, then r KV and d<rldt
=

icf,

where / is the acceleration.

30. To find the hodograph when both the curve described by P and the velocity

of P are given. If
\f/
be the angle the tangent at P makes with some fixed straight

line taken as the axis of x, we notice that KV and
i/>

are the polar coordinates of H.

From the conditions of the question we first find v and
\f/

in terms of some one

quantity. Then eliminating that quantity we obtain the polar equation of the

hodograph. Several examples will be given in the chapter on central forces.

31. To find the equations of motion of a point moving in a

curve with variable acceleration.

We may deduce the components of acceleration parallel to

the axes of coordinates from the acceleration of a point moving
in a straight line. Referring to the figure of Art. 11, let OM = x,
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ON =
y. The components of the velocity of P have been shown

to be the actual velocities of M and N as they move along the

axes of x and y respectively. This being true for all positions of

P, the acceleration of P is the resultant of the accelerations of J/

and N. If then X, Y are the component accelerations of Pt we
have v-^' v d*y

~dr'

32. Ex. 1. When a point Q describes a circle with a uniform velocity, its

projection P on any diameter x'Ox oscillates on each side of the centre through a

length equal to the radius. Prove that the acceleration of P tends towards and

varies as the distance from 0.

Let the arc described by Q per unit of time subtend an angle n at the centre,

let the angle QOx be a when f = 0. Then at the time t, the angle QOjc = nt + a.

If a be the radius, the length OP=a cos (n + a), hence the acceleration

<fte/dt
2= - an2 cos (nt -f- a) = - n*x.

The minus sign shows that the acceleration tends towards 0.

An oscillatory motion represented by z=acos(nt + a) is usually called a rimplf
harmonic oscillation.

1. A point P moves towards a fixed point O so that its velocity varies M
.r*, where x=OP. Prove that the acceleration varies as ac

2*" 1
. Is the acceleration

to or from 0?

33. The Cartesian components of acceleration are not the only ones which are

;ired in dynamics. The components in polar coordinates and those along the

tangent and normal are continually used. Besides these there are the component*
for moving axes and the extension of all these formula to three dimensions. In

order to avoid raising unnecessary difficulties at the beginning of the subject we
shall confine our attention in the present chapter to the simpler cases. The others

will be taken up in the sections on resolved velocities and accelerations.

34. The general principle on which the component of velocity

or acceleration in any fixed direction has been defined may be

.MM-'! up in the following mann r.

Since the component of acceleration is the rate at whirh tin-

component of velocity in that direction is increasing, we have by
! tinition of a dinVivntial coefficient

resolved ) . (res. vel. at time t + dt)
-

(res. vel. at time t)
> = Lu!iit ..

acceleration) dt

In way if the fixed direction is called the axis of

(abscissa at time t + r/M - (abac, at time I)
. rLi

velocity) dt

35. To find the resolved accelerations of a point in polar 00-

Let OP = r, POx = 6 be the polar coordinates of P. By
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Art. 12 the components of velocity at P along and perpendicular
to OP are u = dr/dt and v = rd6/dt. At
the time t + dt let the particle be at P',

the components of velocity along and per-

pendicular to the radius vector of P', viz.

OP', are u^ = u + du and vl
= v + dv. Since

the angle POP' = d0, the component of

velocity at the time t + dt in the direction

OP is MI cos d6 0! sin dd.

This direction being fixed in space for the time dt} the acceleration

along the radius vector OP is

. (u + du) cos dO - (v + dv) sin dO - K du dd
Limit- 77

- = -ji- w -ji'dt dt dt

Similarly the acceleration perpendicular to the radius vector OP is

T . . (u + du) sin dO + (v + cfo) cos dd v dO dv
Limlt - -sr -= rt ^ + ^-

Substituting for u, v their values given above, the accelerations R
and S along and perpendicular to the radius vector at the time t

are respectively

dt
'

_ _ _.
~dtdt

+
dt dt~rdt\ dt

36. To find the resolved accelerations along the tangent and

normal.,

Let the arc AP = s. By Art. 3, the velocity v at P is along
the tangent and v = ds/dt. At the time

t + dt the point is at P', its velocity vl is

in the direction of the tangent at P' and

vl
= v + dv. The components of v1 in the

directions of the tangent and normal at P
are therefore vl cos dty and Vi sin e#-\/r,

where

dty is the angle the tangents at P and P'

make with each other. The acceleration along the tangent at P
is therefore m T . ..(v + dv) cos d^r-v dv--
Similarly that along the normal in the direction in which the

radius of curvature p is measured positively, is

*T T -.. (^ + dv) sin d-/r rf^fr V2

N = Limit - - = v -37-
=

.

dt dt p
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37. We have now obtained three different sets of components for the

tions of a moving point. These are the components A', }' along the axes, the

components R, S along and transverse to the radius vector, and the components
T, iV along the tangent and normal. Any one set can be deduced from any other set

by a simple resolution.

The components jR, S are evidently connected with A', }' by the equations

S= - A'sin0 + Yco*0.

Writing X=d~xldt-, Y=d-i/jdt- and substituting x= rcos0, j/
= rsin0 we arrive by

a simple but rather long differentiation at the values of R and S given in Art. 85.

In the same way we have

The process of deducing the polar and the tangential-normal component* of
acceleration from the Cartesian components may be shortened by the following

artifice. If xr cos we have by differentiation

Since the axis of x is arbitrary in position, let it be so taken that the radios vector

r as it turns round the origin is passing through x at the time f. We then have

= 0, and X becomes R ; hence R=^ - r (~V . To find the acceleration S per-

pendicular to the radius vector, we take the positive side of the axis of x parallel

to the direction in which S is to be measured ; that is, the axis of x most be one

right angle in advance of the radius vector. Putting therefore 6= -
$T, we find

V =
r, ( dt

38. The three elementary sets of components may be summed up in the follow,

ing table. They are to be measured positively in the direction in which the length

named in the fourth column is measured positively.



14 VELOCITY AND ACCELERATION. [CHAP. I.

39. Relative accelerations. Two points P, Q are moving

along two curves, it is required to find the acceleration of Q relative

to P. By the same reasoning as in Art. 10, it follows that if we

impress on both points an acceleration equal and opposite to that

of one of them, say P, their relative motions and accelerations

are unaltered. This leads at once to the following rule
;

the ac-

celeration of Q in space is the resultant of its acceleration relative

to P and of the acceleration of P. As we generally require the

components of acceleration, we say that the component of the

acceleration of Q in any direction is equal to its component relative

to P plus the component of the acceleration of P.

4O. Ex. 1. The position of a point P is given by its polar coordinates r, d,

referred to a fixed origin and the axis of x. The position of Q is given by its

polar coordinates r,, 15 referred to P as origin with

the axi8 f Xl parallel to x ' Jt is re(luired to find

the component accelerations of Q in space.

The polar accelerations of P are

I d
f

d6\=
rdt(

r
Tt)

If Rlt Slt represent similar quantities when

r
} , 0j , are written for r, 6, these are the accelerations of Q relatively to P. If

<p
= B

l -6, we see by a simple resolution, that the resolved part of the space accele-

ration of Q in the direction PQ is

= R^ +R cos + S sin
<j>.

The resolved part perpendicular to PQ is

=
Sfj

- R sin + S cos
<f>.

In the same way the resolved parts along and perpendicular to OP are

E +R: cos
-
&J sin 0,

S + jRj sin + Sj cos
<j>.

Ex. 2. The point P describes a circle of radius a with a uniform velocity u.

The point Q describes a circle of radius 6 relatively to P with a uniform velocity v.

Prove that the components of the space acceleration of Q along and perpendicular

to PQ are respectively v2
/6 + cos . w2

/
a and sin

</>
. u2

/a, where
<f>
= (vjb

-
w/a) t.

Ex. 3. A point P describes a circle of 1 foot radius in 1 hour, and a point Q
describes a concentric circle of 4 feet radius in 14 hours, both points move in the

counter-clockwise direction ;
show that the line joining them rotates in the counter-

clockwise direction for a period of 43TV minutes followed by a period of 21^ minutes

in the clockwise direction. [Coll. Exam. 1896.]

Ex. 4. A circular wire of radius a moves in its own plane without rotation so

that its centre has a simple harmonic motion of amplitude a (Art. 32): a bead

moves on the wire uniformly, completing a circuit in the period of the simple

harmonic motion, and being in the line of the motion of the centre when the centre

is in its mean position and is moving in the direction towards the bead
; prove that
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the acceleration of the bead is towards the centre of the simple harmonic motion

and that its path is an ellipse of eccentricity (| N/5
-

$)*. [Coll. Exam. 1897.]

"'. A railway passenger seated in one corner of the carriage looks out of the
windows at the further end and observes that a star near the horizon is traversing
these windows in the direction of the train's motion and that it is obscured by the

partition between the corner windows on his own side of the carriage and the middle
\\iudow while the train is moving through the seventh part of a mile. Prove that

the train is on a curve the concavity of which is directed towards the star and
which, if it be circular, has a radius of nearly three miles, the breadth of the carriage

being seven feet and the breadth of the partition four inches.

[Math. Tripos, I860.]

41. Angular velocity and acceleration. A rigid body is said to be turning
round an axis OA when each point is describing a circle whose plane is perpen-
dicular to OA and whose centre lies in OA . Let be the angle which the plane

containing any point P of the body and the axis OA makes with some plane fixed in

space and passing through OA. The rate at which the angle is increasing is

called the angular velocity of the body. Following the same line of argument as in

the case of linear velocities, the angular velocity is measured by dfjdt and the

angular acceleration by d^dt-.

notice that if 1\ be any other point in the body and 0, the angle the plane

I\OA makes with the plane of reference, the angle <
-

0, is independent of the time,

so that d<t>ldt
= d^dt.

If Q be any point of the body, r its distance from the axis OA and u = d^]dt be

the angular velocity, the point Q is moving perpendicularly to the plane QOA with

a velocity equal to ur.

If the rotation continue only for a time dt the axis OA (by rotation about which

motion in that time can be constructed) is called the itwtantaneott* axit and w is

the instantaneous ainjulur velocity.

42. An angular velocity u about an axis is geometrically represented by a

length OA proportional to u measured along the axis. The direction of the rotation

is determined by the convention used in Statics to indicate the direction of rotation

of a couple. If OA be the direction in which the length is measured the rotation

when positive, should appear to be in some standard direction to a spectator placed

with his feet at A and head at -tandard direction is often taken to be the

direction of rotation of the hands of a clock.

48. Parallelogram of angular velocities, li two inttantaneout angular

velocitift of a body are repretentfd in nuignitude <; n by two length

mil OC of the j.nmHtlogram cotutructed on OA t OB at tidt* it tkt

inttafUatuotu axit of r / itt length repretent* the magnitude of the

Let Q be any point which at the time ( lies in the plane AOB\ r,, r,, the

distances of <, its distance from OC. Let tf,O4, ,-Ofl,

OC. The velocity of Q due to the two rotations w, , , it ,r, + / while that

due to the single rotation is Op. To prove that these are equal it is sufficient to

itt that if u.i. uli r. presented forces and OC the resultant, the equality merely

asserts that the sum of the moments of OA, OB about Q is equal to that of the

resultant OC.
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Let v be the velocity of Q, then

v = Wjfj + u.2rt
=

fl/>.

If Q lie on OC, p=0, and therefore every point of OC is at rest. Hence OC is

the resultant axis of rotation. Also since ft = v/p the angular velocity about the

axis is Q.

44. The theorem of the parallelogram of angular accelerations follows from
that of angular velocities, just as the parallelogram of linear accelerations follows

from that of linear velocities.

45. The rule for compounding angular velocities being the same as that used
in Statics to compound forces, we may interpret the limiting case when the inter-

section O is at infinity as we do the corresponding case in Statics. It is however

simpler to deduce the result independently.

Let the body have instantaneous angular velocities w, u', about two parallel axes

OA, O'B distant a from each other. The resultant velocity of any point Q in the

plane of OA, O'B and distant y and y + a from them respectively. is wy + u' (y + a).

Firstly, let w + o/ not be zero. Equating the velocity of Q to zero, we see that

every point on a straight line 0"C determined by y = is at rest. The
W + CO

resultant axis of rotation is therefore parallel to OA, O'B and at a distance y from

the former. To find the resultant angular velocity ft we notice that the velocity of

a point Q situated on OA is represented both by ft(-?/) and w'a. Hence substi-

tuting for y, fi= u + u'.

Secondly, let w + w' = 0. The resultant velocity of Q is independent of y and is

equal to w'a. Hence every point in the plane of the axes (and therefore every point

of the rigid body) is moving with the same velocity in the same direction. We
infer, that two equal and opposite instantaneous angular velocities about parallel axes

are together equivalent to a translation in a direction perpendicular to the plane

containing the axes.

46. Units of space and time. The ordinary unit of time

is the second of mean solar time. Space is measured either in

feet or centimetres. The metre is 39 '37 inches nearly, while the

centimetre is the hundredth part of the metre. The unit velocity is

then either one foot or one centimetre per second, and the unit of

acceleration is a gain of one unit of velocity per second.

47. We are not however restricted to use these units. Let

the unit of space be cr feet and the unit of time r seconds. The

unit of velocity is then a- feet per T seconds, i.e. a/r of the feet-

seconds units of velocity. The unit of acceleration is a gain of

CT/T feet, per second, to be added on every r seconds, i.e. cr/r
2 feet

per second added on every second. The unit of acceleration is

therefore tr/r
2 feet-seconds units of acceleration.

Let F be the measure of an acceleration when the units are

cr, r
;
and / the measure of the same acceleration when feet and
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seconds are used. Then since the measure of the same thing
varies inversely as the length of the units employed, we have

48. KJC. 1. If the acceleration of a falling body doe to gravity is g- 32-19

when a foot and a second are the units, show that the acceleration is 981*17 when
a centimetre and a second are the units.

2. A point moving with uniform acceleration describes 20 feet in the half

second which elapses after the first second of its motion. Prove that the accelera-

tion is to that of gravity as 32 to 32*18. Prove also that if a minute be the unit

of time aud a mile that of space the acceleration will be measured by 240/11.

[Math. Tripos, I860.]

V.x. 3. If the area of a field of ten acres is represented by 100 and the accelera-

tion of a heavy falling body by 585, find the unit of time. [Coll. Ex.]

Since an acre is 4840 square yards, 100 new square units is equal to

4840 x 9 x 10 square feet. The new measure of length is therefore 66 feet. Let

r be the required unit of time, then 58^= . 32. This gives r=ll seconds.

Laws of Motion.

49. If one portion of matter, say A, act on another, B, the

mutual action is in dynamics called force. If we are examining
the motion of A only, disregarding B, this force is said to be

// to -A, but if we are taking both portions into consideration,

the action is an internal force. An external force is usually called

an impressed force. The mutual actions and reactions between

the molecules or parts of a body are internal forces. These forces

have different names according to the circumstances of the case.

When the bodies are apparently in contact, thoir mutual action is

called pressure, when at a distance, the action is called attraction.

Nothing has been said of the size of the body, but it is

convenient to divide bodies into small portions. A body so small

that its position in space when free is determined 1\

ordinates of one point may be called a particle. This division

!y small particles is not necessary for our present

purpose. All that we requiiv is that then- shall be no rotation.

A particle may be said to have no rotation
;
the rotation of finite

bodies is usually regarded as a part of Rigid Dynamics.

50. Our object in dynamics is to investigate the motion of a

body. We have then to consider (1) how a body A moves when

I



18 LAWS OF MOTION. [CHAP. I.

left to itself; (2) how the motion is affected by the action of

an external force, say, due to the presence of another body B\

(3) how the action of B on A is related to the reaction of A on B.

The answers to these questions are given in Newton's Laws of

Motion.

The strict definition of the meaning of the word force as used

in dynamics is determined by these laws. We do not consider

all the actions which one body can exert on another but those

only which tend to alter the instantaneous motion of the body.

The following definition or explanation is commonly given. The

word force is used to express any cause which produces or tends

to produce a change in the existing state of rest or motion of the

body.

The velocity of a body has both direction and magnitude, we
must therefore suppose that the cause of this motion also has

both direction and magnitude. To determine a force we require

to know (1) its point of application, (2) its direction, and (3) its

magnitude. The unit of magnitude will be considered presently.

51. Newton's Laws of Motion are as follows* :

Law 1 . Every body continues in its state of rest or of uniform
motion in a straight line, except in so far as it may be compelled to

change that state by impressed forces.

Law 2. Change of motion is proportional to the impressed

force, and takes place in the direction of the straight line in which

the force acts.

Law 3. To every action there is always an equal and contrary
reaction ; or, the mutual actions of any two bodies are always equal

and oppositely directed.

52. The first law of motion asserts that the internal forces of

a body do not alter the uniform motion. This law is not a

repetition of the explanation of the word force given in Art. 50.

The law asserts that the causes of motion must be external.

* The reader who desires something more than the slight sketch here given of

the laws of motion may refer to Newton's Principia, to a treatise on Matter and

Motion by the late J. Clerk Maxwell and to the Elements of Natural Philosophy by

Thomson and Tait. There are also Maxwell's two reviews of the latter book in

Nature, vol. vii. and vol. xx. Several points of controversy are discussed in an

essay by K. F. Muirhead to which a Smith's Prize was awarded in 1886, see the

Phil. Mag. 1887.



ART. 54.] MOMENTUM. 19

The law is sometimes expressed by saying that the body has

inertia. The body has no power of itself to change its state of

rest or motion, but goes on moving in the same direction with the

same velocity when not acted on by an impressed force.

63. To define a uniform state of motion we require the measurements of space
and time. If we assume the truth of the first law for some particular body, we can

measure time by the space passed over by that body. The first law then assorti

that the spaces described by any other body (not acted on by any external force)

are equal when the spaces simultaneously described by the clock-body are equal.

There remains the practical difficulty of obtaining a body free from external

forces, which could be used as a clock. For this purpose we have recourse to some

other dynamical result.

Applying the principles of dynamics, as developed from the laws of motion, to

a rotating body, it can be proved that the motion of rotation about a certain axis

is uniform if the external forces have no moment about that axis. The rotation of

such a body may be used very conveniently as a clock.

The rotating body actually chosen is the earth. The forces which tend to alter

the period of rotation are so small as to be only scientifically perceptible. This

period, scientifically amended where necessary, is used as a unit of time. The

practical methods of adapting our clocks to the rotation of the earth are described

in treatises on astronomy.

We have specially mentioned the rotation of the earth because that supplies the

measure of time in common use. Other phenomena may also be used, for

example, the velocities of the different kinds of light and their wave lengths in

vacno are constants. Their numerical values have been calculated, and from these

we could deduce unalterable units of space and time. The numerical values

connected with any perpetual phenomenon would enable future observers to dis-

cover our present units from their determinations of the same periods and lengths.

54. The words "
change of motion

"
in the second law mean

"
change of momentum.'

Th quantity of matter in a body is called its mass. Thi-

may 1>. im-asured by taking any given lump of matter as the

unit of mass. Confining our attention, tin- tin- moment, to any
tli-- -am* kind of matter, the mass of any other lump may be

deduced by taking the ratio of the volumes.

The momentum of a body, all the points of which are moving
lilt lines with equal velocities, is the product of the

mass by the relon

\V i: the momentum of a body has direction and

magnitude. It may be compounded and resolved by the parallelo-

I aw. Let 77i be the mass, v the velocity, and let be the

! tli. direction of motion makes with some fixed straight

22
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line
;
then v cos 6 is the component of velocity, and mv cos the

component of momentum in the direction of that straight line.

55. The force spoken of in the second law is an external

force. It includes the ideas of the magnitude of the force and

the time during which its action is considered. During this

time the direction and magnitude of the force continue un-

changed. We may also regard it as an impulse by which the

whole momentum is instantaneously communicated to the body.

Consider the case in which a uniform force F acts on a moving

particle in the direction of its motion, and in the time t' t let

the velocity be increased from v to v
f

. The second law asserts

that the change of momentum produced in a unit of time, viz.

m (v' v), divided by the time t' t, is proportional to the

magnitude of F.

If the force F is not uniform, the time t' t must be replaced

by dt and the velocity v v by dv, Art. 19. The law then asserts

that the product of the mass and the acceleration is proportional

to the instantaneous magnitude of the force F. We then have,

F varies as mf.

56. The arguments for the truth of Newton's laws may be

classed under three heads.

First, we can make an appeal to common experience; this

is considered to suggest the laws in a general way. We then

try some simple experiments so arranged that they can be con-

ducted with considerable accuracy. These test the laws only

within the limits of error of the experiments, but, by taking care,

these can be reduced to a small amount.

Secondly, we can show that having granted some portions of

the laws as being truly founded on an experimental basis other

portions follow by pure reasoning.

Lastly, we can assume the laws as a working hypothesis and

deduce from them the proper motions of a variety of bodies.

If these are found to agree with the observed motions, the laws

are tested within the limits of error of the observations. Let us

consider these latter tests a little more fully.

57. The position of a planet, the times of the beginning and

end of an eclipse and some other phenomena can be observed

with great accuracy and are therefore severe tests of the truth
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of the results of dynamics. The calculations by which these

predictions are obtained are very complicated, depending on the

combination of many forces acting diversely. There are therefore

many causes of error. The predictions in the Nautical Almanac

are made some years beforehand, so that any small error, say
in a velocity, might be expected by accumulation to produce a

sensible effect. Yet notwithstanding both these opportunities of

detecting errors, the predicted places agree with the observations.

In many of the astronomical calculations the tmth of the law

of gravitation is assumed. The comparison of the predictions

with observations is a test of the truth of that law, as well as

of the principles of dynamics.

The solutions of the equations of motion have also in some

Cftfloo led to unexpected results, which had never been discovered

until they were suggested by theory. For example, no one had

noticed the slow rotation of the plane of vibration of a pendulum
due to the rotation of the earth until Foucault deduced it from

lyiiJimical principles.

Our belief in the truth of the laws of motion may be made
to rest on these latter considerations. We may regard these laws

as the axioms on which the science of dynamics is founded. All its

predictions have as yet been verified. It is only when we arrive

at a result contradicted by experience, after due allowance has

been made for the necessary errors of observation, that we can

be called on to amend so much of the laws as has led to the

error.

Still such a course would be felt to leave something wanting.

We require to know how the laws were discovered, or at least

what considerations would make them probable. For this reason

v brief summary of the arguments has been given in the

following arti-

68. i-'imt law. Let a body be aet in motion by any oauae, say it in |tioJMfc4

along a horizontal plane. We notice that when the cause ceases to act, the body

tea in motion. It baa therefore some power of retaining the motion given

to it. Th.ro in only a question of degree; doea it retain the whole or only MOM
portion of the velocity given to it? The body gradually cornea to rest, bat we abo

observe that there are forces tending to stop the body, such aa friction and the

resistance of the air. We observe that when theae reaiataDoea are email the body

continues in motion for a long time. This suggests that the diminution of the

y may be entirely due to the resistances, though it doea not prove that faot.

We improve the argument by having recourse to
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accurate to allow measurements to be made. Any of the ordinary problems given
in treatises on elementary dynamics may be utilized for this purpose, but the one

most commonly used is Atwood's machine.

59. Before proceeding to that experiment let us consider some points connected

with the second law. How is the action of a force affected by the previously

existing motion of the body? We must show that both in direction and in magni-
tude the action is independent of the velocity. Let us take gravity as the force to

be experimented on. We find that a stone dropped from a moving support, say,

the ceiling of a railway carriage in rapid uniform motion, hits the same point of

the floor that it would have hit had the carriage been at rest. Since, by the first

law, the stone retains the horizontal velocity of the carriage, gravity must have

acted vertically on the moving particle, that is in the same direction as if the

particle were at rest.

If a number of balls are simultaneously projected horizontally from a platform

with different velocities, they reach the ground at the same time
; only one knock

is heard. Gravity has therefore pulled all the balls through equal vertical spaces

in the same time. This experiment suggests that the magnitude of gravity is not

altered by the existing motion of the particle attracted.

These experiments cannot be made with great accuracy. They are first attempts

to answer the question placed at the beginning of this article.

60. In Atwood's machine two heavy particles are attached together by a string

which passes over a pulley. If w, w' are the weights of the particles, the moving
force is w-w' while the weight of the mass moved is io + w'. By choosing nearly

equal values of iv and w' the motions produced by gravity can be made as slow as

we please. The spaces described and the velocities generated can therefore be

measured with some degree of accuracy, and the results compared with the laws of

falling bodies. The machine being carefully constructed, some allowance may be

made for the inertia of the pulley, the friction, &c. Even the resistance of the air,

owing to simplicity of the motion, could be allowed for; but it is almost imper-

ceptible in such slow motions. By an arrangement of platforms small weights can

be added or subtracted so that the moving force can be suddenly increased or

decreased at pleasure. By making this force balance the resistances we can test

the first law. By other changes we can determine whether the effect of a force is

modified by a previously existing velocity.

61. The equation F=mf. Let F be the force which will just support a body
when attracted by the earth. Then reversing this force we can imagine the body
to be acted on in the same direction by two forces each equal to gravity. Each of

these forces can act only by producing motion in the body and we have just seen

that this action is not modified by any existing motion. Assuming this, each

force will generate the same velocity in the body in the same time. Thus twice the

velocity is produced by twice the force, and generally the velocity produced varies as

the force when the mass is constant.

Again, if we suppose that two equal volumes of the same material are placed side

by side, and each acted on by equal forces, equal velocities are generated in the

same time. If the initial velocities are equal, the bodies will continue to move

side by side, without pressing on each other, and we may suppose them to be united

into one mass. Thus twice the force will produce in twice the mass the same
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velocity, and generally the force varies as the mass when the velocity produced is

constant. Varying both the velocity and the mass, we conclude that the magnitude
of the force varies as the mass multiplied by the velocity generated. This product
is called momentum, Art. 54.

62. Lastly let us consider how far the equality of action and reaction is

suggested by elementary considerations. If we press a stone with the finger, the

finger is pressed back by the stone. If a horse pull a body by a rope, the tension

of the rope impedes the progress of the horse. To determine if these actions are

equal, we shall examine separately the conditions when the bodies are in contact

and when they act at a distance.

v."- have to prove that when two bodies in contact press on each other, the

momentum lost by one is equal to that acquired by the other. In oar test experi-

ment, we arrange the circumstances so that these changes of momenta can be

readily observed. Let us suspend two spherical balls by strings and allow them to

impinge on each other. The initial positions being given we can find the velocities

just before impact. By observing their subsequent motion we can deduce the

velocities just after the impulse is concluded. In this way Newton showed that

the changes of velocity were such that the momentum lost by one was equal to

that gained by the other.

Let us next compare the forces exerted by two mutually attracting bodies. It

was a well-known fact that a magnet attracts iron, but Newton showed experi-

mentally that the iron attracts the magnet with an equal force. This he effected

by floating both in separate vessels in standing water. The vessels being placed

in contact, neither was able to propel the other. The resultant force on each

body was therefore zero. Admitting that the mutual action and reaction of the

vessels in contact are equal and opposite, it follows that the attraction of each of

the distant bodies on the other was equal to the pressure between the vessels and

therefore equal to each other.

63. Units of mass. Th< M cond law of motion enables us

to extend our measurement of mass to bodies of different matt-rial-.

i ret select some quantity of a standard substance and define

to be the unit of mass. Such a quantity of the same or

a i mi her substance is then said to be of the same mass when two

known to be equal, acting on the two masses generate

equal velocities in equal times. The second law then asserts

that, with this definition of mass, the momentum generated by

proportional to that I'-TCC. Art. 55.

'I'll.- Hriti-h unit <>f m:iss is defined by Act of Partial),

i ijuantity <>f platinum preserved in the office of the Ex -

nl <.ill.'l the Imperial standard pound Avoirdupois.

thousandth pan -I it is declared to be a grain, and 5760

- to be a pound Troy. The French standard of mass is called

mini. . This is the <mr-t h.u>an.lth part of a certain mass

of platinum preserved in the Archiv.-s ami ( all.-l

h pound is very nearly equal to 453*59 grammes, and a
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kilogramme to 2*2 pounds. The system of units derived from the

centimetre, gramme and second is usually called the C.G.S. system.

That founded on the foot, pound and second may be called the

F.P.s. system. It should be noticed that the pound and the gramme
are measures of mass, not weight

A very full account of the history of the English standards of weight and of

their comparison with the French standards was given by the late Prof. W. H. Miller

in the Phil. Trans, for 1856.

64. Units of Force. The unit offorce is that force luhich,

acting on the unit of mass for a unit of time, generates a unit of

velocity. This is usually called Gauss' absolute unit of force.

When the unit of mass is the Imperial pound and the units

of space and time are a foot and a mean solar second, the unit

of force is called a poundal. When the unit of mass is the

gramme, and the units of space and time are a centimetre and a

second, the unit of force is called a dyne.

Since the pound is 453*59 grammes and a metre is 39'37 inches,

it is clear that the poundal generates a velocity of 1200/39'37

centimetres in 453*59 grammes. By the second law the magni-
tude of a force is proportional to the product of the mass by the

velocity generated ;
the poundal is therefore equal to

1200 x 453-59

This makes the poundal equal to 13825 dynes nearly.

When a force F, constant in magnitude and fixed in direction,

generates in a mass m a velocity v in a unit of time, we know

by the second law that^T=Xmv where X is some constant de-

pending on the units of m, v and F. Since F is a unit when m .

and v are units, X = 1. Hence F=mv.

When the force F is not constant in magnitude for any finite

time, we have recourse to the principles of the differential

calculus. Let /be the acceleration, then /is equal to the velocity

which would be generated in a unit of time if the force F
continued constant in magnitude for that time. Hence F = mfy

see Art. 55.

65. The determination of the magnitude of a force by ex-

periments on the velocity generated is an inconvenient method

of proceeding. WT
e have recourse to the attraction of the earth

on them. The law of gravitation asserts that the forces of
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attraction of the earth on different bodies at the same place are

proportional to the masses of those bodies. This is true whatt

1) the materials of which the body is made, provided only they

may be regarded as particles when compared with the size of the

earth.

This is an experimental fact which is independent of

laws of motion, and is referred to here as a practical method

of comparing forces. Forces therefore may be compared by

measuring the weights which they would support at any the same

place on the surface of the earth.

Let W be the force of attraction of the earth on a mass m
at any given place, let g be the acceleration, then the equation
F = mf becomes W = mg.

The law of gravitation asserts that g is a constant at the same

place on the surface of the earth. It is sometimes called the

constant of gravitation.

The average value of g for the area of Great Britain is about

32*18 when the units of space and time are a foot and a second.

When the unit of space is changed to centimetres, the numerical

value of g becomes 981.

The equation W= mg shows that the weight of a unit of mass

/ The poundal, or unit of force, is therefore 1/^rth part of the

weight of the unit piece of platinum, Art. 63. Since 16 oz. make

the pound, the poundal is roughly equal to the weight of half an

mince. The dyne is consequently equal to l/13800th part of half

an ounce, Art. 64, roughly a 64th part of a grain.

66. There are two elementary experiments by which it may be hown that g

is a constant at the same place and from which the numerical ralue may bt

deduced.

In Atwood'B machine, let m, , m, be the mass* suspended by a string over the

pulley, Art. 60. If the law of gravitation is true, the weights are m,* and n,p.

The mass moved being ro, + ma and the moving force (i -
",) 0, the equation

mf shows that

where / is the acceleration. By measuring the initial and terminal velocities w

can find the value of / and therefore of g for any assumed manes IN, , m,. Repeat

>ent with other masses, we find that the constancy of p is verified M
far as the imperfections of the machine allow.

67. The method adopted by Newton is more accurate. He measured the

of oscillation of hollow wooden balls which he filled with substances of
"
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kinds. Whatever the matter placed inside might be, the time of oscillation (under

similar circumstances) was found to be the same. The forces of attraction,

measured dynamically by the motion communicated, must therefore have been

proportional to the masses moved.

The theory of the oscillation of a particle suspended by a string is given in the

chapter on constrained motion. Many experiments have been made since Newton's

time for the purpose of determining the numerical value of g. In these the

oscillations of bodies of finite size have been observed. An account of some of

these experiments is given in the author's Rigid Dynamics, vol. i.

68. Accelerating Force. The quantity / in the equation
F= tnf is the acceleration measured, as already explained, by the

velocity generated per unit of time. The quotient F/m is called

the accelerating force. It is equal to the acceleration and the

word "
force

"
appears to have been added merely to show from

which side of the equation the quantity is derived. It is a

convenient phrase to use when we wish to call attention to the

fact that the impressed forces under discussion are proportional to

the masses acted on.

The product of the mass and the acceleration is called the

effective force. Thus md-xjdt
2 and md2

y/dt
2 are the Cartesian

components of the effective force on the particle ra. The utility

of this name will be better understood when we come to the dis-

cussion of the motion of several connected particles.

69. The vis viva of a particle whose mass is m and velocity v

is mv2
. The half of this quantity has also been called the vis viva,

but in England it is more usual to call this latter quantity, viz.

%mv-, the kinetic energy.

70. The work of a force. The theory of work is so much
used in statics that only a very brief account is necessary here.

Let the point of application A of a force F be moved to a point

B, where AB = ds. Let be the angle made by the direction of

motion of A with the direction of the force. Then Fcosdds is

the work of F for the indefinitely small displacement ds. It is

also called the virtual moment of F. The work may also be defined

to be the product of the force by the resolved displacement of the

point of application in the direction of the force.

If the point continue to move and describe any curve, the

integral fF cos 6ds is defined to be the work.

If a weight W descend a space dz, the work done is Wdz.
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It the space is finite and equal to h, the work is I Wdz. The
J o

work is therefore Wh.

71. The theoretical unit of work is the work done by a

dynamical unit of force acting through a unit of space. As ex-

plains! in Art. 64, this unit of force might be the poundal and the

unit of space the foot.

The work required to raise a given weight a given height
is taken as a practical unit of work. The unit adopted by English

engineers is that required to overcome a force equal to the gravity
of a pound through a space of a foot. This unit is called afoot-

pound.

In the c.G.s. system the theoretical unit is the work done by a

dyne in acting through one centimetre. This unit is called

the erg.

The work done when a kilogramme (Art. 63) is raised one

11 H -i iv is the practical unit and is written kilogramme-metre. A
kilogramme-metre is 7*23 foot-pounds very nearly.

72. The rate of doing work is measured by the work done

per unit of time. Thus, if the particle describe a space ds in the

time dt, the rate of doing work is FcosOds/dt. The rate is

therefore Fv cos 6.

The term horse-power is used to express the work done per
unit nt' time in practical measure. The unit of horse-power is

illy taken to be 550 foot-pounds per second.

Thr term force de cheval corresponds to horse-power, but with

different unit.-. The unit of force de cheval is 75 kilo^i

metres per second. A force de cheval is therefore 541 foot-pounds

per second
;

i.e. '98 of one hor><

1 . If the unit of space is a feet, the unit of time r seconds, and the

BUMS ft pounds, prove that the unit of force is Aur/r
2
,
the unit of energy is M0*/r*, the

unit of horse-power AUT*/T* ; see Art. 47.

'/ n present the force, energy and horse-power with the*

' measures where feet, seconds and pounds are the units.

Prove that a foot-pound is -138, and an inch-ton is 96*8

nit'tre.
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The Equations of Motion.

73. Equations of Motion. When the resolved part F of

the impressed force in any direction and the mass m are given,
the corresponding equation of motion is found by equating F/m to

the resolved acceleration in that direction. For example in

Cartesian coordinates, if Xlt Y1} be the components of the im-

pressed force, we unite XJm, YJm for X, Y in Art. 31. We
thus have

(fix _ Xl dz
y _ Yl

dt2
~
m '

dt?
~
m '

The polar and other resolutions may be treated in the same way.

74. To make the meaning of these equations clear, let us

consider the case of a particle moving in a straight line under

the action of several forces, Flt F%, &c. The corresponding
theorems when, there are no restrictions on the motion of the

particle will be considered later on.

If m be the mass in motion, the equation of motion takes the

form

where s is the space described, and v the velocity at the time t.

This equation may be integrated in two ways. Taking the

time t as the independent variable, we have

mv-mv = JFldt + fF2dt + ........................ (2),

where v is the velocity at the time t
,
and the limits of integration

are tQ to t. The forces Fly F.2) &c. may not act during the whole

time, thus Fl might act from ti to ti + a, F2 might act from t2 to

U + ft and so on. In such cases the limits of each integral should

be from the time of beginning to the time of ending of the force.

For the sake of conveniently using the equation we notice (what

really follows at once from the second law) that each force F adds

to the moving mass a momentum equal to fFdt, where the integration

extends over the time of action of the force. This is called the

time-integral of the force. The equation (2) is called the equation

of momentum.

75. Taking the space s as the independent variable, we

have
..................... (3).
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It follows that the increase of the kinetic energy of the

moved is equal to the sum of the works of the several forces.

Each force F communicates to the moving mass an amount of
kinetic energy equal to jFds where the integration extends over the

space described while F acts on the mass. This is called the space-

integral of the force. The equation (3) is called sometimes the

equation of vis viva and sometimes the equation of energy.

If the velocity of the mass is the same at any two times, the

momentum added on by some of the forces must be equal to that

removed by other forces.

If again the velocity is the same in any two positions, the

work added on by some of the forces must be equal to that sub-

tracted by other forces.

In this way we obtain two equations to find the one quantity v.

If the forces Flt F^ &c. are constant both the space and time-

integrals can be at once found. We therefore use either or both

the equations (2) and (3). If the forces are functions of either t

or s, only one of the integrations can be immediately effected. We
use the equations (2) or (3) according as the forces depend on the

time or on the position of the particle.

76. When the system
contains more than one par-

ticle, their mutual actions

may have to be taken into

ideration. Suppose, for

example, that two particles

P
t P, whose masses are m, m't

are constrained to slide on the straight lines Oar, Ox, and are

acted on by the forces F, F' in these directions. Let these be

< nimected by a string of given length whi.-h passes over a smooth

pullrv C. The two equations of energy are

{m (v
9
-v,*) = fFds -fTcosBds,

im' (t;'
-

v,'') ~SF'ds' -JT&x&ds'
where 6, ff are the angles the two portions of th- suing make

with o.r. <>.,'. To use these equations we must eliminate

unknown tension T.

We notice that the string is in equilibrium under the a<

of the tensions at its extremities P, P ; hence, by the principle* of
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statics, their total virtual moment or work is zero. We have

therefore

T cos 6ds + T cos Pels' = 0.

Adding therefore the two equations of energy together

Jm (v
2 - v 2

) + Jm' (v* - v '*)=JFds +fF'ds'.

The tension therefore may be omitted informing the equation of

energy, when both the particles are brought into the equation.

77. Consider next the two equations of momenta

m (v -v )=fFdt-fTcos6dt.
m (v

- VQ')
= fF'dt

-JT cos B'dt.

The tension T measures the whole momentum transferred per
unit of time from one particle to the other along the string.

The components transferred are respectively TcosO, TcosO', and

these are not equal. The transverse components TsiuO, TsmP
are destroyed by the reactions of the rods Ox, Qx. If however

the pulley C is situated at the intersection of the rods, 6 and 0'

are always zero, and the component momentum added to one

particle is equal to that taken from the other.

Since the particles must now move with equal velocities, we

have v' = v. Eliminating T from the equations of momenta, we

have

(m + m') (v
- v )

= fFdt - fF'dt.

We can thus eliminate the reaction T by combining the two

equations of momentum when the reaction makes equal angles

with the directions of resolution.

78. Examples*. Ex. 1. Two heavy rings P, P', of unequal mass, slide on two

smooth rods Ox, Ox' at right angles and equally inclined to the horizon at an angle

a = |7r. The rings are connected by a straight string of given length I and start from

rest at distances a, a' from 0. Find the motion.

Let *,
' be the distances of P, P' from at the tune t. Since the particles

start from rest the equation of vis viva becomes

% (mv
z + m'v12

)
= jmg sin ads + jm'g sin ads'= g sin a {m (

-
a) + m' ('

-
a') } ...... (1),

the limits of integration being s= a to and s'=a' to '. The length of the string

being given we have the geometrical equation

*2 + '2= i
2= a2+a'2

.................................... (2).

Differentiating (2) we have v +*V= ............................................. (3).

* Most of these examples are taken from the examination papers for the entrance

and minor scholarships in the several colleges.
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The equations (1) and (3) give r and r'. When the particles again come to rest,

r = 0, r' = 0. Substituting in (1) and using (2) we find, besides the initial solution

m*+'m

Let y be the initial depth of the centre of gravity of the particles below the

horizontal line through O, y the depth at the time t. The equation (1) then gives

*(rot; + roV8
)
= <7(ro + ro')(i,-y ) ...... (4).

The centre of gravity G cannot therefore rise above the horizontal line A It drawn

through the initial position //, for if it could, the right-hand side of (4) would be

negative while the left-hand side is essentially positive. Since the distances of the

of gravity from Oar, Ox' -are respectively q='m'IM and =*m/Af, where

.V = m + m', we see from (2) that the path of the centre of gravity is the ellipse

This conic cuts the straight line All in two points //, A'. If both these point* lie

between the rods the centre of gravity continually oscillates in the elliptic arc having

//, A' for the extreme points. If either // or A' lies outside the rod*, one particle

will pass through the intersection 0.

If the string instead of being straight were bent by passing through a small

pulley at the intersection of the rods, we could eliminate T from the two equations

of momentum. We then have

(m + m') v = jmg sin adt -
jm'g sin adt = g sin a (m -

m') f.

The equation of vis viva is the same as before, but since r'= - v and
' - a' =<i - *.

it takes the simpler form

4 (m + m') v*=g sin a (m - 1') (
-

a).

These equations give * and v in terms of the time I. We notice that if m >m't the

descends along the rod Ox and finally draws P up to 0.

i 'wo small rings of masses m, m' are moving on a smooth circular wire

i fixed with its plane vortical. They are connected by a straight weightless

inextensible string. Prove that, as long as the string remains tight, its tension to

JM in

centre and $ is the inclination of the string to the horixon. (I

' mK < < '- '

1

Equate the tangential accelerations of the two particles.
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Ex. 3. A bucket of mass M Ibs. is raised from the bottom of a shaft of depth
h feet by means of a light cord which is wound on a wheel of mass m Ibs. The
wheel is driven by a constant force which is applied tangentially at its rim for a

certain time and then ceases. Prove that if the bucket just comes to rest at the top
of the shaft, t seconds after the beginning of the motion, the greatest rate of working

in foot-poundals per second is
*r-p~1 6j,~i r Tin ' ^e mass of the w^eel mav be

considered to be condensed in its rim. [Coll. Ex. 1896.]

Let the force F act on the rim for a time t'. This force communicates a

momentum Ft' to the system, which (since the system comes to rest after a time t) is

equal to that removed by gravity in the whole ascent, therefore Ft'= Mgt. If
'

is

the space ascended in the time t', the force F communicates a work Fs', which is

equal to that removed by gravity in the whole ascent h, therefore Fs'=Mgh. Since

the mass moved is M +m and F - Mg is the acting force we have also the two

equations (M+ m) v' = (F-Mg) t', (M + m) s'= \ (F-Mg) t? where v' is the velocity at

the time t' (Art. 25). These four equations determine JF, t', v', s'. The rate of

adding work to the system is Fv (Art. 72), and this is greatest when v is greatest,

i.e. when v=v'. The result follows without difficulty.

Ex. 4. A train of mass m runs from rest at one station to stop at the next at a

distance 1. The full speed is V and the average speed is v. The resistance at the

rails when the brake is not applied is uVjlg of the weight of the train and when the

brake is applied it is u'Vjlg of the weight of the train. The pull of the engine has

one constant value when the train is starting and another when it runs at full speed.

Prove that the average rate at which the engine works in starting the train is

mF 2
(u + U)ll, where i ? - 1 - 1 . [Coll. Ex. 1895.]

There are three stages of the journey. During the first the engine pulls with

force F, the acceleration is Flm-uVjl, and the velocity increases from zero to V.

During the second stage the velocity is uniform and equal to V, the pull F' of the

engine just balancing the resistance. During the third the engine stops working,

the brake is applied and the acceleration is -
u'Vfl. Using the formulae of Art. 25,

and remembering that the sum of the spaces in the three stages is I, while the

average velocity is I divided by the sum of the times, we deduce F. The average

rate of working is the quotient "work by time," Art. 72; during the first stage

Ex. 5. The cage of a coal-pit is lowered for the first third of the shaft with a

constant acceleration, for the next third it descends with uniform velocity, and then

a constant retarding force just brings it to rest as it reaches the bottom of the shaft.

If the time of descent is equal to that taken by a particle in falling four times the

whole depth, prove that the pressure of the man inside on the bottom of the cage

was at the beginning 23/48ths of his weight. [Coll. Ex. 1897.]

The initial acceleration / is found to be 25#/48. If R be the pressure required

the equation of motion of the man is mf=mg - E. This leads to the value of R.

Ex. 6. One engine A starting from rest generates in two minutes in a train a

velocity of 45 miles per hour while it passes over a distance of 1 mile on the level.

Another engine B of equal weight can pull the same train up an incline of sin"1
1/80

at a full speed of 20 miles per hour. Assuming that the resistance due to friction, &c.

is constant and equal to the weight of 12 Ibs. per ton, prove that the time average of
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the horse-power at which A works for the two minutes is 1*52... time* the hone-

power of B. [Math. Tripos, 1808.]

Ex. 7. A window is supported by two cords passing over pulleys in the frame-

work of the window (which it loosely fits) and is connected with counterpoises each

equal to half the weight of the window. One cord breaks, and the window dnsnonds

with acceleration /. Prove that the coefficient of friction between the window and

the framework is *-5 ^ , where a is the height and b the breadth of the window.
(9 +J) b

[Coll. Ex. 1896.]

Let the pressures of the window against the framework on one side at the bottom,
on the other at the top, be R, R'. Since the window does not move sideways or

turn round, we have the statical conditions R = R', Tb = 2Ra. Considering the

vertical motion for the weight alone and for both bodies respectively, we have

These determine /n.

Ex. 8. A two-wheeled vehicle is being drawn along a level road with velocity 9 :

the wheels (radius <) are connected by an axle (radius r) fixed to them and the weight
of the vehicle exclusive of the wheels and axle is If, and its centre of gravity is

vertically above the middle point of the axle. Prove that if the shafts are in a

horizontal plane with the tops of the wheels, the horse is working at the rate

.
a _ . .

a , where X is the angle of friction between the axle and its bearings.

[Coll. Ex. 1896.]

The vehicle, being in uniform motion, is in equilibrium under the action .of the

pull F of the horse, the reaction R of the axle acting at some angle $ to the vertical

and the friction Rt&n\. The equations of Statics give F, 7?, and 0, and the

required rate of working is Fv.

'.i. A particle of mass m is suspended from a fixed point by a string of

length a, and from m is suspended another particle of mass m' by a string of length

//. If a horizontal velocity be suddenly communicated to m, show that the

of the strings are immediately increased by amounts which are in the ratio

Let T, T' be the tensions of the strings above and below m. Since m deseribes a

o whose centre is 0, its vertical acceleration is v*/a, hence mT- T' - mg.

The vertical acceleration of m' is equal to that of m plus that due to the relative

ion. Relatively to m it begins to describe a circle of radios 6 with a voice i

the relative vertical acceleration is therefore *'/* *** Art* 89 -

Solving these equations the result follows at once.

1 0. In the system of pulleys in which the string, passing round each polity,

has one end attached to a fixed beam and the other to the pulley next above, there

>
"
power

" and no weight." The n rooveable pulleys are all of equal weight,

they are smooth, and can all be treated as particles in calonlsting their motion*

The string is without mass. Prove that the acceleration of the lowest pulley is

[Coll. Ei. 1896.]

3
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The equation of momentum for the rth pulley counting downwards is

where T
l
and Tn+1 , being the power and weight, are zero. Also the velocity of each

pulley is half that of the one just above. Multiplying these equations by 1, 2,

22 ... 2"- 1
beginning at the lowest and adding the results the tensions disappear.

Ex. 11. In the system of pulleys in which each string is attached to the weight,

there are two pulleys, the weight of the moveable pulley being w, the power P and

the weight Hr
. Prove that the acceleration of ir is r/ . [Coll. Ex. 1897.]

Ex. 12. A prism with axis horizontal and whose section by a plane perpen-

dicular to it is a regular polygon ABCD... of 4n sides is fixed with the uppermost
face AB horizontal, and n equal particles are placed at the middle points of AB,

BC, &c. These are connected by a continuous string which passes over smooth

pulleys at the corners B, C, &c. Assuming that the faces are smooth, prove that

the initial acceleration is /- ( cot ^-
- 1

)
. [Coll. Ex. 1897.1

2?i \ 4w /

Ex. 13. Two equal particles are connected by a string one point of which is fixed

and the particles are describing circles of radii a and 6 about this point with the

same angular velocity so that the string is always straight. The string is suddenly

released, prove that the tensions of the two portions are altered in the ratios

(a+ &) : 2a and (0 + 6) : 26. [Coll. Ex. 1895.]

Before the release the tensions are mv^/a and mv2
2
/b, where v

lja= v2lb = w.

After the release the relative space velocity is v = v
l + v*. The acceleration of each

particle being T/nt, the relative acceleration is 2Tjm. Since the relative path of

either is a circle of radius r=a + b, the relative acceleration is v2
/r. Equating

these, the tension is wy2
/2r. The result follows.

Ex. 14. A cubical box slides down a rough inclined plane, whose coefficient of

friction is p, two sides of the base being horizontal. If the box contain sufficient

water just to cover the base of the vessel, prove that the volume of the water is

/u,
times the internal volume of the vessel. [Coll. Ex. 1897.]

The relative acceleration of a particle of water and the box must be perpendicular

to the surface.

79. Linear and Angular Momentum. Let the momentum mv of any

particle P of a system be represented in direction and magnitude (Art. 54) by a

straight line PP'. Since velocities obey the parallelogram law, we may proceed as

in Statics and replace the momentum PP' by three linear momenta at any assumed

origin in the directions of the axes, and three couple momenta.

Let the coordinates of the particle be x, y, z and the direction cosines be X, n, v.

The three linear momenta being the resolved parts of mv are mv\, mvp, mvv

respectively. These are often called linear momenta. The three couple momenta

are the moments of the momentum mv about the axes. We know by the corre-

sponding theorem in Statics that these moments are

V

mv

These are called the angular momenta about the axes.

The linear momentum of a particle in any direction is the resolved part of the

momentum in that direction. The angular momentum about a straight line is the

moment of the momentum about that straight line.
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Impulsive Forces.

80. Impulsive forces. In some cases the forces act only
tor a very short time, yet, being of great magnitude, product-

perceptible effects. Let a force F act on a particle of mass wi

for a time T. Let v be the velocity at any time t less than T,

and let F, F' be the velocities at the beginning and end of the

interval T. We have

mm= F
> (v-v)=j*Fdt ,ix

Let the force F increase without limit while the duration T
decreases without limit. The integral may have a finite limit,

say P. The equation then becomes

m(V'-V) = P (2).

I vt are the greatest and least velocities during the impact,
the space described lies between vt

T and vj
1

, and both these are

zero in the limit. The particle therefore has not had time to move,

l>ut its velocity has been changed from V to V. This sudden

change of velocity is the distinguishing characteristic of an

impulse.

We may consider that a proper measure has been found for a

force when from that measure we can deduce all the effects of

the force. Since in the case of the limiting force the change of

velocity i> the only element to be determined we may measure

such a force by the quantity P. When /' is known, the change
of velocity is given by (2).

81. An impulse or blow is the limit of a force whose magnitn-1
i- infinitely great and time of action infinitely small. A timt-

force F is measured by the UK, m*-,, turn generated per unit of hW.
An impulse P is measured l>y the whole momentum generated

luring the whole time of action, that is, PfFdt.
When the '

> of the force F remains fixed in space

: it > time of action, the resolved part of P in any din

is also the limit of the resolved part of F. When the din

s not fixed in space, we resolve F into its components A )

ntegrals of these, viz. X l =fXdt, F,-/Fcft, are defined to be

"mponents of the limiting impulse. .

:; _
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Strictly speaking, there are no impulsive forces in nature, but

there are some forces which are very great and which act only for

a short time. The blow of a hammer is a force of this kind. Such

forces should be treated as finite forces if the small displacements

during the time of action cannot be neglected, and as impulses

when these are imperceptible.

82. The general equations of impulsive motion follow from

those of finite forces. If (ti,, v^ are the Cartesian components of

velocity we have, by Art. 73,

du v dvl ,rmW=X'
m

Tt
= Y

>

where X, Y are the components of a finite force F. Let (u, v),

(u', v) be the components of the velocity just before and just

after the action of any impulse. Let Xl =fXdt, Yl =fYdt be

the components of the impulse, Art. 81. We then have by inte-

gration,
m (u' u) =Xl} m (v' v)=Yl .

These equations may be summed up in the following working

rule,

/ Res. Mom. \ / Res. Mom. \ _ /Resolved\

\after impulse/ \before impulse/ \ impulse /
'

83. Elastic smooth bodies. When two spheres of any
hard material impinge on each other they appear to separate

almost immediately and a finite change of velocity is generated
in each by the mutual action. Let the centres of gravity of the

spheres be moving before impact in the same straight line with

velocities u, v. After impact they will continue to move in the

same straight line
;
let u', v be their velocities. Let m, m' be the

masses, R the action between them. The equations of motion are

m(u'-u) = -R, m'(v'-v) = R ....(1).

These equations are not sufficient to determine the three quanti-

ties u', tf and R. To obtain a third equation we must consider

what takes place during the impact.

Each of the balls is slightly compressed by the other, so that

they are no longer perfect spheres. Each also in general tends

to return to its original shape, so that there is a rebound. The
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period of impact may therefore be divided into two parts. Firstly,

the period of compression, during which the distance between the

centres of gravity of the two bodies is diminishing and secondly,
the period of restitution in which the distance is increasing. The
first period terminates when the two centres of gravity have the

same instantaneous velocity, the second when the bodies separate.

The ratio of the magnitude of the action between the bodies

during the period of restitution to that during compression is

found to be different for bodies of different materials. If the

bodies regain their original shapes very slowly the separation

may take place before this occurs and then the action during

restitution is less than that during compression.

In some cases the force of restitution may be neglected, and

the bodies are then said to be inelastic. In this case we have just

after the impact u' = v'. This gives

D mm , , niu + m'v /n .R = tu v\ :.u (2).
ra + m v m +m

If the force of restitution cannot be neglected, let R be the

whole action between the balls, R^ the action up to the moment

of greatest compression. The magnitude of R can be found by

experiment. This may be done by observing the values of u'

and v' and thus determining R by means of the equations (1).

Such experiments were made in the first instance by Newton

and led to the result that R/R is a constant ratio which depends
on the materials of which the balls are made. Let this constant

ratio be called 1 + e. The quantity e is never greater than unity :

in id.- limiting case when e=\ the bodies are said to be perfectly

elastic.

The Newtonian law R/R9
= 1 + e gives only a first apprari-

mation to the motion, and is not to be regarded as strictly true

under all circumstances.

The value of e being supposed to be known the velocities after

impact may be easily found Th action R, must be first calcu-

lated as if the bodies were inelastic, the value of R may then be

deduced by multiplying by 1 + e. This gives
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The three equations comprised in (1) and (3) give the whole

motion. Substituting from (3) in (1), we have

u'

.(3).
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If any velocity is given to the first, it will strike th n-\t in order

and be reduced to rest. The second will strike the third and

remain at rest and so on. Finally the last sphere will proceed
onwards with the whole momentum communicated to the first

If the spheres are perfectly elastic, e = 1 and the same things

happen when the masses are equal.

If the spheres are placed close together, they are only in

apparent contact
;
and each impact will still be concluded before

the next begins. Each ball tran>t is the momentum to the next

in order and remains in apparent rest, the last ball moving
<>n\\ards with the whole momentum communicated to the first.

This may partly explain why, in some cases when blows have

been given by the wind or sea to masses of masonry, the stones

to leeward have been more disturbed than those exposed to the

blowa

88. /:/-. A series of perfectly elastic balls are arranged in the same straight

lin', one of them impinges directly on the next and so on; prove that if their

masses form a geometrical progression of which the common ratio is 2, their

velocities after impact will form a geometrical progression of which the common
ratio is 2/3. [Math. Tripos, I860.]

89. Two smooth homogeneous spheres A and B impinge

/ on each other. Tn find the subse-

Let the common tangent plane at the

of contact be the plane of xy, and

let the common normal be the axis of z.

The spheres being smooth the mutual im-

pulse acts along the axis of z.

Let Vlt V9 be the velocities of the two

spheres, before impact, V} ', V* the velocities after. Let

. *i,W|) f (tt,, ,, W9)

components of the velocities 7,, K, f
and l t the Mine

letters, when accented, represent the components of V,', K/. Let

m, m' be the masses.

impulse has no components parallel to th<

1 y, we have
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Considering next the normal impulse, we find as before

n mm' .
, R . R

These equations determine the components of the velocities after

the impact.

When the bodies are rough, the mutual impulse does not

necessarily act along the common normal. The problem then

becomes more complicated. The reader will find this case discussed

in the author's Rigid Dynamics.

90. When two imperfectly elastic spheres impinge on each

other, vis viva is always lost.

First, let the spheres impinge directly on each other. We
have, as in Art. 83,

-r, mm' , t R
, RR = -

-, (u v) (1 + e\ u -u --
, v = v H , .m+m ^ m m

:. mu'* + m'v* = mu? + roV + J2 (v
-

u) + R
(

L Rmm
)

= mv? + raV--7 (u - v)
2
(l
- e

2
).m + m^

The last term being essentially negative, the vis viva is decreased

by the impact.

Next, let the spheres impinge obliquely. Let 2T be the

vis viva before, 2T' that after the impulse. Then, as in Art. 69

+ ra' u< +

while 2T77
is expressed by the same formula after the letters u, v, w

have been accented. Hence

It follows that vis viva is always lost.

If V is the relative normal velocity before impact, the vis viva

,
. mm Tro / ^ O v

lost is - ,F2

(l-e
2
).

The vis viva after impact is equal to the vis viva before only

when e = l, that is, when the bodies are perfectly elastic. It is

evident that Wi cannot be equal to wz or e = 1.
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91. E.r. I. Particles are projected from a given point A in all directions and

obliquely impinge on a fixed plane of elasticity t. Prove that after reflexion the

directions of motion diverge from a point B, where All intersects the fixed plane at

right angles in some point J/, and BNe . AM.

Let AP be the path of a particle before impact, PQ that after. Let QP
produced intersect the perpendicular AM produced in some point B. The com-

Jf

B

ponent of velocity, u, along MP is unchanged by the impact, while that perpendicular,

viz. r, becomes ev and is reversed in direction,

/. tanQPx=*r/u= tan AP.M.

It immediately follows that MB= e . AM, so that every reflected path intersects the

perpendicular from A in the same point.

By using this theorem we can trace the course of a particle after successive

reflexions from any number of fixed planes. To take a simple case, let it be

required to find how a particle should be horizontally projected from a given point
.-1 on the floor, that after reflexion at two vertical walls Ox, Oy, it may pas*

through another given point A'. We draw a perpendicular AB to the first wall

and take MB = eAM. A perpendicular is drawn from B to the second wall, and

C is taken so that CN=e .BN. Then, since all the paths after the first and second

reflexions pass through B and C respectively, the required path AQPA' is found by

joining A' to C, Q to B and P to A.

'2. A particle of elasticity e is projected along a horizontal plane from the

middle point of one of the sides of an isosceles right-angled triangle so aa after

reflexion at the hypothenuse and remaining side to return to the same point ;

prove that the cotangents of the angles of reflexion are e + 1 and e + 2 respectively.

[Math. Tripos, 1851.]

92. A free system ofmutually attracting particles is in motion.

Prove (1) that the centre of gravity moves in a straight line with

form velocity, and (2) that the motion of the centre ofgravity
is not affected by any impacts between the particles.

'I'll- mutual attraction between any two particles is measured

by the momentum transferred from one to the other per unit

of time; the mutual impulse is measured by the whole mo-

mentum transferred. In either case it follows by the third law

motion that the whole momentum of the two particle* and the

components in any directions, are unaltered b\ th< n mutual

action.
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Let (a?,, #,), (#.,, y.,),
&c. be the Cartesian coordinates and (t/,, v,),

(_, i'-j),
&c. the components of velocity at any time t. Since

we have by differentiation u2ra = %mu, v^m = 2??iv. It has just

been shown that the components Sm, ^mv are unaltered by
the mutual attraction or impact of any two particles. Hence

the components of the velocity of the centre of gravity, viz. u, v,

are constant throughout the motion. The path of the centre of

gravity is therefore the straight line x = ut + A, y = vt + B, and

the velocity is the resultant of it, v.

If all the particles were suddenly collected together at the

centre of gravity, each particle having its momentum unaltered

in direction and magnitude, the momentum of the collected

mass would be the resultant of the transferred momenta. The

equations u%m = 2miu
t v%m = 2mv assert that the centre of

gravity of the particles before collection moves exactly as the

collected mass does.

93. The effect of the mutual action of two particles (whether

attracting or impinging on each other) is to transfer a momentum
from one to the other whose direction is the straight line joining

the particles. Hence the moment of the momentum about any

straight line is unaltered by the transference. The moment of

the momentum of the whole system (that is, its angular mo-

mentum, Art. 79), about any straight line is unaltered by the

mutual actions of the particles.

In a system of mutually attracting or impinging particles, the

components of its linear momentum along, and the angular momenta

about, any fixed straight lines are constant, except sofar as they may
be altered by the action of external forces. This is only the third

law of motion more fully explained.

94. Examples*. Ex. 1. If a system of mutually attracting particles were

suddenly to become rigidly connected together, determine the conditions that the

rigid body should be at rest.

The rigid body will possess the same momenta as the system but different!}
7

distributed. If the momenta of all the particles are in equilibrium, the rigid body

has no component of momentum in any direction and no moment of momentum

*
Many of these examples are taken from the examination papers for the

entrance and minor scholarships in the several colleges.
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about any straight line. It is therefore at rest. By the roles of Statics the

necessary and sufficient conditions for the equilibrium are (1) the whole linear

momentum along each axis of coordinates is zero, (2) the angular momentum
about each axis is zero.

2. Particles of equal mass travel round the sides of a closed skew polygon

in the same direction, one starting from each corner and the velocity of each is

proportional to the side along which it moves. Prove that their centre of gravity

is at rest and that it coincides with the centre of gravity of the sides of the polygon

supposing the masses of the sides to be equal. Prove also that if one particle be

removed, the centre of gravity of the remaining particles describes a polygon whose

sides are parallel and proportional to those of the original polygon.

Since the sides exert no pressures on the particles the centre of gravity mores
in a straight line with uniform velocity whatever the momenta of the particles

may be. When, as in the problem, the momenta are parallel and proportional to

the sides of a closed figure, the components 2wn and -my of Art. 92 are zero, and

the centre of gravity is therefore at rest. The other parts of the question then

follow at once.

Ex. 3. An explosion occurs in a rigid body at rest, and the particles fly off in

different directions. If in any subsequent positions they were suddenly connected

together, prove that the rigid body thus formed would be at rest.

4. A number of particles originally in a straight line fall from rest, and

rebound from a partially elastic horizontal plane. Prove that, at any time, the

particles which have rebounded once lie in a parabola. [Coll. Ex. 1897.]

5. Two small spheres of equal mass can move inside a rough
horizontal tube of length I. One sphere impinges with velocity r on the other at

If the friction of the tube produce a retardation / in either sphere and if

after impact the spheres just meet again, prove that 2/J= rV. [Coll. Ex. 1896.]

ii. Four equal balls of the same material are projected simultaneously

with equal velocities from the corners of a square towards its centre, and mast in

the neighbourhood of the centre. Show that they return to the corners with

velocities reduced in the ratio of the coefficient of restitution to nnity.

[Coll. Ex. 1898.]

7. Two equal spheres each of mass w are in contact on a smooth hori-

zontal table, a third equal sphere of mass m' impinges symmetrically on them.

Prove that this sphere is reduced to rest by the impact if 2m' = 3m*t and find the

lots of kinetic energy by the impact. [Coll. Ex. 1897.]

s. Two equal balls lie in contact on a table. A third equal ball impinge*

in, its centre moving along aline nearly coinciding with a horizontal common

tangent. Assuming that the periods of the two impacts do not overlap, prove that

the ratio of the velocities which either ball will receive according as it is struck

first or second is 4 : 3 - *
,
where t is the coefficient of re*tit

[Math. Tripos, 1898.]

'.. A heavy particle tied to a string of length / is projected horUonuUy

with a velocity r ;, the point to which it is attached. Show that the enetfy

lost by the impulse is a minimum when K*= 10/^8: see Arts. 27, 90.
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Ex. 10. A particle of mass m lies at the middle point C of a straight tube AB
of mass J/and length 2a, both of whose ends are closed. It is shot along the tube
with velocity V. Prove that it will pass the middle point of the tube in the same

direction after a time ^(l + -\ ,
e being the coefficient of restitution between the

particle and either end of the tube
;
and that in this time the tube will have

moved forward a distance (l + jV.'
[Coll. Ex. 1895.]

The particle traverses the length CA = a in a time a/V and after impact has a
relative velocity eV. It therefore traverses the length AB = 2a in a time 2a/K,
and after impact at B has a relative velocity ez V. It traverses the remaining

length BC=a in the time ajeW. The whole time T is the sum of these three

times. The particle is now at the same point C of the tube as before, the distance

traversed by the tube is therefore equal to that traversed by the centre of gravity
of the system. Since the initial velocities of the particle and tube are V and zero,

the velocity of the centre of gravity is v = mVI(M + m). The distance traversed is

therefore vT.

Ex. 11. A particle is projected inside a straight tube of length 2a, closed at

each end, which lies on a smooth horizontal table and whose mass is equal to that

of the particle. Prove that, at the moment just before the fourth impact the tube has

described a distance 15a, if the coefficient of restitution is , and find the proportion
of kinetic energy which has disappeared. [Coll. Ex. 1895.]

Ex. 12. A smooth particle of mass m is at rest in a rectangular box of mass

M which is free to move down a smooth plane inclined at an angle a to the

horizon, the lowest edge of the box being horizontal, and the particle at its middle

point. Suddenly the box is started down the plane with velocity V. Prove that

if the coefficient of restitution be unity, the particle will strike the top and

bottom of the box after equal successive intervals of time; and that the spaces
travelled by the box in the first and second of these intervals are as .

7 2 + gl sin a : ^-^ F2 + Bgl sin a,M +111

where 21 is the length of the box. [Coll. Ex. 1896.]

Ex. 13. A perfectly elastic ball is projected vertically with velocity vv from a

point in a rigid horizontal plane, and when its velocity is v2 an equal ball is

projected vertically from the same point also with velocity v
1 ; show, (1) that the

time that elapses between successive impacts of the two balls is vjg, (2) that the

heights at which they take place are alternately

(Svl
- 1?2) fa + v2)/80 and (3^ + v2) fa - v2)/8g,

(3) that the velocities of the balls at the impacts are equal and opposite and

alternately \ fa
- v2 )

and fa + v2). [Math. Tripos, 1896.]

Since the balls exchange velocities at each impact, we may suppose that they

pass through each other, one ball following the other at an interval r = (v1
- v.2)/g.

Ex. 14. A weight of mass m and a bucket of mass m' are connected by a light

inelastic string which passes over a smooth pulley. These bodies are released from

rest when a particle whose mass is p and coefficient of elasticity e falls with

vertical velocity V upon the bucket. Prove that a second collision will occur between

the particle and bucket after a time e (m + m') V\mg and find the condition that the

bodies should then be in their initial positions. [Coll. Ex. 1895.]
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Ex. 15. A particle is projected from a point on the inner circumference of a
circular hoop, free to move on a horizontal plane. Prove that if the particle

return to the position of projection after two impacts, its original direction most

make with the radius through the point an angle tan" 1
{*/(! + + *)}*.

[Coll. Ex. 1897.]

Ex. 16. Two balls of masses .V, m (centres A and B), are tied together by a

string, and lie on a smooth table with the string straight. A ball of mass m'

(centre C] moving on the table with velocity V parallel to the string strikes the

ball of mass m, so that the angle ABC is acute and equal to a. Prove that If start*

r/Hw'cos3 a(l+)
with a velocity g^-^jL^ %

e being the coefficient of restitution

between m and m. [Coll. Ex. 1895.]

Let U' be the velocity of m' after impact in the direction CB
t r,' the common

velocity of J/, m in the direction AB, v2
'

the velocity of m perpendicular to AB ;

then MI' (17'- Fcosa)= - R. Since 12 cos a has to move both M and m, while

R sin a affects m only,

(M + m)vl

' = Rcosa, mv<{=R sin a.

At the moment of greatest compression, the velocities of m', m along CB are equal

I'' = v
l

'

cos a -f v2
'

sin a.

These equations give R. Multiplying the result by 1 + e the second equation then

gives r,'.

17. Three particles A, B, C whose masses are m, m', m", connected by

straight strings, are placed at rest on a smooth table, and the obtuse angle ABC is

T - a. If A receive a blow F parallel to CB prove that C will begin to move with a

w'.Fco82 a
velocity --

. , .
'

in l//j + mm sm-a

Let T, r be the impulsive tensions of AB, BC. Since A, B must have equal

velocities along BA
(F cos a - T)/m= (T - T cos a)/m'.

Since B, C have equal velocities along BC

(rcosa-r)/m'=r/m".
These equations determine T and T', and the result required is Tim".

18. Two smooth spheres whose coefficient of restitution is e are attached

by inextensible strings to fixed points. One of them, whose mass is M, describing

a circle with velocity r, impinges upon the other whose mass is m* and which U at

If the line of centres makes an angle e with the string attached to M and

the strings at that instant cross each other at right angles, then m' begins to

describe a circle with velocity t^U. E*- 1896'1

Let A, B be the centres of m, m', and let the strings be attached to />, K. Let

/' i intersect EB in C. The force R on m acts along BA and makes an angle

with AD. Let v' t
w' be the velocities of m, m' along EC and CD. Then

iie moment of greatest compression, the velocities of m, m' along AB an equal.

sin0 = i0'cos0. This determines the value of R, and the required Telocity U

.)co80/m'.
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Ex. 19. A smooth inelastic sphere of radius r and mass in is suspended by a

string above a horizontal table, and another smooth inelastic sphere of radius r' and

mass TO' is moving on the table; prove that the cotangent of the angle through
which the direction of motion of the second sphere is deflected by a collision is

. where a and b are the vertical and horizontal distances of
mb

{(r + r')2_ a _ 63ji

the centre of the first sphere from the path of the second before impact.

[Coll. Ex. 1892.]

We notice that the vertical motion of one sphere is stopped by the reaction of

the table, while that of the other is not stopped by the tension of the string.

Ex. 20. Four equal particles are connected by three equal strings AB t BC, CD
and lie on a horizontal plane with the strings taut in the form of half a regular

hexagon. An impulse is applied at A in the direction DA. Prove that the initial

tension of BC is one-fourteenth of the impulse. [Coll. Ex. 1897.]

Ex. 21. If three inelastic particles, m
l , HI.,, MI.,, moving with velocitiesi>lf v2 ,v8

making angles a, /3, 7, with each other, impinge and coalesce, prove that the loss of

. Sw^t;,
2

(in.-, + m.,)
- 2Swi,WM;, v.2 cos y

energy is -

\yv [Coll. Ex. 1896.]

Ex. 22. A shot whose mass is TO penetrates a thickness s of a fixed plate of

mass M, prove that, if M is free to move, the thickness penetrated is s I ( 1 + --
j

.

[Coll. Ex. 1896.]

The mass m strikes M with a velocity v and continues to move inwards until m
and M have the same velocity v

l
= mv l(M+m). If F be the resistance regarded as

constant, x and x + <r the spaces described by M and TO,

TO (v* - V) =-2F(x + <r), Mvi*= 2Fx.

Eliminating x, we find 2Fff=v *MmftM+m). When M is infinite, 2Fs = v 2
in.

The ratio <r/s follows. This problem may also be easily solved by considering
the relative motion.

Ex. 23. A smooth uniform hemisphere of mass M is sliding with velocity V
on an inelastic horizontal plane with which its base is in contact; a sphere of

smaller mass m is dropped vertically so as to strike the first on the side towards

which it is moving, at an inclination of 45; prove that if the hemisphere be

stopped dead, the sphere must have fallen through a height -y^-
-

-^
'- where e

is the coefficient of restitution between them. [Math. Tripos, 1887.]



CHAPTER II.

RECTILINEAR MOTION.

Solution of the Equation of Motion.

95. LET us suppose that a particle of mass m is constrained

to move in a straight line, which we may call the axis of x, under

tin* action of forces whose component along x is F. Let F= /

We have seen in the previous chapter that the equation of motion

d*x F
is

., .

- - = X.
at2 m

perly this equation gives X when a? is a known function of f,

and therefore answers the question, given the motion, what is the

force? Usually we require the solution of the converse probl

given the acceleratingforce X (Art. 68),find the motion. To deter-

in ine this, we must regard the equation of motion as a differential

equation and seek for its solution.

96. In the general case X may be a function of x and t and

also of the velocity v of the particle. But the equation can only

be solved in limited cases. We shall rxnmine these solution- in

turn.

Let us suppose that X is a function of t only, say X*
I ^ration we have

where suffixes have been used to represent integrations
v

regard to t
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In this way x has been expressed as a function of t, leaving
the constants A and B undetermined. As this value of x satisfies

the differential equation, whatever values A and B may have,

there is nothing in that equation to help us in finding these two

constants. We must have recourse to some other data. These

are the initial conditions of the motion. Let us suppose that

the particle was projected at a time t a, from a point determined

by x = 6 with a velocity v c. Then remembering that v = dx/dt,

we have

c=f,(a) + A, b-f(a)+Aa+R
Solving these, we find A and B. The motion is therefore given by

*=/ (0 + [o -f, (^} t+{b-ac + af, (a) -/ (a)}.

97. Let X be a function of x only, say X=f(x).

?-/

AT u- i u dx dx d?x . dx
Multiply by ^, __-/()_.

-2/() + 4 ..................... (2),

To determine the value of A and the sign of the radical we use

the initial conditions. Let us suppose that when t a,x b, and

v = c. We then have

c*-2f,(b)
= A (4),

C-{2/<&)+4}* (5)-

If c is not zero, the radical must have the same sign as c, i.e. the

radical is positive or negative according as the direction of the

initial velocity makes x increase or decrease. If however c = 0,

we notice that the particle will begin to move in the direction

in which the force acts; the radical therefore follows the sign

of the initial value of X. Since X is a function of x only, it is

obvious that if the initial value of X is also zero, the particle is

at rest in a position of equilibrium and that there will be no

motion.

We now have
dx

i (6).
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Representing the left-hand side of this equation, after the in-

tegration has been effected, by (f> (x), we have

(7).

To find B we recur again to the given initial conditions, viz. that
r = I when t = a, hence B = <f>(b) a.

98. The equation (7) determines t when x is known, i.e. it

the time at which the particle passes over any given point
of the straight line along which it moves. If we require the

position of the particle at any given time, we must solve the

equation and express
* = *<0.............................. (8).

The solution of this algebraical equation may lead to different

values of x, thus we may have # = ^(2), =
^r,(t), &c. We have

yet to determine which of these represents the actual motion.

We notice that since the equation (7) is satisfied by x b
t t = a,

one at least of these values of x must satisfy this condition. All

the others must then be excluded as not agreeing with the given
initial conditions. If more than one of these solutions could

satisfy this condition, the equation obtained by putting f = <z in

viz. <f>(x)
= a + B,

must have equal roots. Hence
<f>' (jc)

= Q when x= b. Since #(#)

represents the left-hand side of (6) it immediately follows that

2/i (&) + -4 is infinite. But by (5) this cannot happen if the

initial velocity c is finite.

99. Snhji-rt of inti'tirntinn infinite. Otlu-r points requiring attention arise

when the integrals which occur are such that the subject of integration is infinite

at gome point If of the path. Since the forces in nature are necessarily finite this

cannot happen in th. integral (2), for if /, (x) were infinite its differential coefficient,

/(x) for any finite value of x, would also he infinite. In the integral (6) the rabjeet

f int<vnitioti is iniinit.- \vh-n the velocity is zero.

We can use the integral (6) to find the time of transit from any point A to a point

P as near as we please to B on the same side of B as A. If the result is infinite

the particle never reaches B. If the time of arrival at D in finite we have to find

the subsequent motion.

As the particle approaches B the velocity is numerically decreasing and there-

to accelerating force X has the opposite sign to the velocity. Supposinc X
not also to vanish at H, thr par: Arriving at B mutt begin to rvffWM f*

*tep*. Considering B as a new initial position, the subsequent motion mejr be

deduced from (3) by putting c=0. If A'=0 also at B, the particle, as

above, will remain there in equilibrium.
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1OO. Ex. 1. A particle moves in a straight line under a central force tending
to the origin and equal to n2/.r*. Investigate the motion.

,72- 2

Wehave = " ....................................... 1 "

The minus sign is introduced because the left-hand side represents the

acceleration in the positive direction of x and the force acts towards the origin.

We then find

(2).

Let us suppose that the particle starts from rest at a very great or infinite

distance from the origin ; then when x is infinite, dx/dt= 0. Hence A = 0, and the

equation becomes

Since the particle begins to move towards the centre of force the velocity is

initially negative. We therefore take the negative sign.

Multiplying by x and integrating, we find

x2=B-2nt ....................................... (4).

Initially when t = 0, the particle is infinitely distant from the origin, i.e. .x is

infinite and therefore B is infinite. It follows that the particle does not get within

a finite distance of the origin until after the lapse of an infinite time.

If the initial conditions are slightly altered we may obtain a finite result. Let

us suppose the particle to be initially projected at a distance x=b (b being positive)

with a velocity n/b towards the centre of force. Proceeding as before we find .4 = 0,

and as it is given that the initial velocity of the particle is negative, the radical

has still the negative sign. We thus again arrive at the equation (4). Since x = b

when t = Q, we find J5= 62
, and

x=(b*-2nt)^ .................................... (5).

Since x is initially positive we must give the radical the positive sign.

As t increases we see that x continually diminishes and when t= bzj2n the

particle arrives at the origin. Its velocity at that moment is found by putting

x= in (3) and is easily seen to be infinite.

Cases in which either the velocity or the force is infinite do not occur in nature.

If we construct a central force by placing some attracting matter at the origin

there would be an impact before the particle reached the origin and the whole

motion would be changed. But as a matter of curiosity we may enquire what

would be the subsequent motion if our equations held true for infinite velocities

and forces.

In this case the particle arrives at the origin with a negative velocity, we must

therefore suppose that the radical in (2) does not change sign when the quantity

passes through infinity at the origin. Hence since x now becomes negative, we

must take the positive sign in (3) instead of the negative one hitherto used. This

gives x- =B + 2nt, where B need not necessarily have the same value as before. To

find B we notice that at the initial stage of this part of the motion, x=0 and

t = 62/2n; we easily find that B= -b2
. The motion after the particle has passed

the origin is therefore given by x= - (2nt
- &2)-.
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n-t

2. If x=at* we have -^=At**=A f^\
*

, where 4=an(w-l). Let at

suppose that n > 2.

A particle is placed at rest at the origin. Show that if acted on by X=At* *

the subsequent motion is given by .r = at*, bnt if acted on by X=A(xja)* the

motion is given by x= 0.

E.r. 3. A particle is projected from the origin with a velocity up* under the

action of an accelerating force A*= - $n"(p -
x)^. Prove that the particle comet to

rest in the position of equilibrium defined by x=p.

101. Let the acting force X be a function of the velocity only,

say X =f(v). The equation of motion now takes the form

dv
(\\

Integrating this, we have

)-+^ (2);

writing (f>(v) for the integral on the left-hand side, this becomes

$(v) = t + A (3).

Supposing as before that the particle is initially projected at a

time t = n, with a velocity c, we have A = ^ (c)
- a.

Two rules are given in the theory of differential equations for

>lution of the equation (3). The first rule requires us to

solve the equation for v and find v = ^(t\ and as already ex-

plained that solution is to be chosen which makes 0c
t = n. Remembering that v = dx/dt we then obtain x by

gration.

It the equation (3) cannot be solved for t;, we use the second

rule. This requires us to recur to the form (1). eliminating dt by

u-ing the equation v = dx/dt, we have

vdv

utter integration both x and t are expressed by (2) and (4)

in terms of a subsidiary quantity v. We notice also that tlm

Mihsiiliary .juantity has a dynamical meaning, vi*. the velocity

the particle.
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1O2. Ex. 1. A particle is projected icith a velocity V in a medium whose

resistance is xvn, where n is a positive quantity. The equation of motion is then

Measuring t from the moment of projection we have when t=Q, v=V, hence

A = -
. We therefore find

1-n
v l-n -V 1-n=-(l-n) K t .............................. (3).

If n < 1 the velocity decreases continually from its initial value V, and vanishes

yi-n
after a finite time,viz.t=pr. The particle will then remain at rest, since

A'=0.

If n > 1, writing (3) in the form

we see that the velocity decreases continually and vanishes after an infinite time.

If n= l, these equations take an indeterminate form. Keturning to the equa-

tion (2) we have

logv= -Kt + A; .-. v = Ve~ Kt
........................... (5).

It follows that the velocity decreases continually and vanishes after an infinite

time.

In all these cases we can find the space described in any time t. Remembering
that v = dxjdt, we have from (3),

Determining B from the condition that x= when t= Q we find

2-n

-(2-n) Kx={Vl-n
-(l-n) Kt}

l-*-V*-n ..................... (6).

We may also find the velocity after the particle has described any space x.

We begin with
dv

V = -KVn
.

dx

.: v*-ndv=- Kdx-, .-. vz
-n=V*-n -(2-n) Kx .................. (7).

Let us find the space described by the particle when v= 0.

yz-n yi-n
If n<l, we have x= - and f=,, . as shown above; thus the particle

(2
- n) K (1-n) K

comes to rest after describing a finite space in a finite time.

If n>l and <2, we have #=/n while t is infinite; the particle therefore

comes to rest after describing a finite space in an infinite time. If n>2, we find

that v vanishes when x is infinite and the particle describes an infinite space in an

infinite time before it comes to rest.

Ex. 2. If the resistance is KV, show that the particle comes to rest after

describing the finite space F//c in an infinite time.
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Ex. 3. If the resistance is KV-, prove that the particle describes an infinite

space in an infinite time before coming to rest.

108. Ex. 1. If A*= 0(r) ./(x) or X=<f>(v)f(t), prove that the equation of

motion can be solved by separating the variables.

In the former case we use r dvjdx = A, in the latter dvfdt = X.

2. If X=f(x)v + F(x)v* show that the equation of motion

linear by writing r2~*= y.

Ex. 3. If X = f(v
2
jx) show that the equation of motion becomes home

iiml that the variables can be separated by writing v* = xy.

Motion of a heavy particle.

104. .1 heavy particle starting from rest slides down a rough
/lit line which is inclined to tfie vertical at an angle 6. ft i<

red to find the motion.

Let be the initial position of the particle, 0V the vertical,

Q the particle at any time t. The accelerating force due to

gravity is gcos0. The pressure on the straight line being
//"/ -in 0, the retarding force due to friction is /ugrsinl, where

ft,
is the coefficient of friction. The whole accelerating force i*

therefore

f= g (cos jj.
sin 0) = g sec e . cos (0 + e),

u h. ic /*
= tan . Writing OQ = *, the equation of motion is

dt~ ds

Integrating, we find

v* = 2^8ececos(^-r-e)-l-2l.

th particle starts from rest, v and * vanish together. We
have 40, and

* = 2gs sec cos (0 + <). . (*l

int.-rpivt tin- tMiinula we make the angle VOJV-t and

draw any hue NVQ perpendicular to ON cutting the
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vertical in V and the straight line along which the particle

travels in Q. Then ON= s cos (0 + e). It follows that the velocity

acquired in describing any chord OQ is independent of 6 and is

equal to that acquired in describing 0V.

If the chord OQ is taken on the same side of the vertical V
as N, the angle 6 as above measured becomes negative. Since

the friction varies as the pressure taken positively, it must now
be represented by fig sin 6. The theorem therefore only applies
to the chords on the side of the vertical opposite to ON.

If we make the figure turn round the vertical OF, the straight

line OF will describe a right cone having OF for its axis and

|TT e for the semi-vertical angle. The velocity acquired in

descending any chord from rest at to the surface of this cone is

equal to that acquired in descending OF.

105. By integrating (1) twice with regard to t, and re-

membering that both s and dsjdt vanish when t = 0, we find

s = J#sececos(0+e)Z- (3).

We may interpret this formula by a similar geometrical con-

V

struction. Making as before the angle VON = e, we see that,

when t is constant, (3) represents the polar equation of a circle

whose radius vector is s and whose centre C is situated on ON. We
have therefore the following theorem. Describe any circle passing

through and having its centre on ON, and let it cut the vertical

through in some point F. The time of descent from rest at

down any chord OQ of this circle is the same as that down OF. The

chord OQ must be on the side of F remote from the centre.

In the same way if the circle is drawn above 0, we can show

that the time of descent from rest at any point Q of the circle to

is equal to the time down FO.
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1O6. When the straight line down which the particle slides is smooth ON
coincides with the vertical. The cone in Art. 104 becomes a horizontal plane, and

the circle in Art. 105 has OF for a diameter. We thus fall back on the well-known

theorems (1) that the velocity acquired in descending from rest to a given hori-

zontal plane is the same for all chords, (2) that the time of descending from rest at

the highest point of a circle to the circle is the same for all chords.

107. If the motion take place in the air we must make
allowance for its resistance. Supposing the resistance to vary as

thr velocity, the equation of motion is

drs ,.

/= g sec e cos (0 + e). Remembering that v ds/dt we find

by integration

thr constant being omitted because * and v vanish together.

Transposing KS, the equation can be integrated again by following

ordinary rule for linear equations. We have

=f(te*'
-- *+

CJ
.

Noticing that 8 should vanish when t = 0, we have c I/*.

H- nee, restoring the value of/,

s = 2 Sec e cos (6 + e) \nt
- 1 + e

\\hrn / is constant and (6 + e) is regarded as variable we

see that (3) is again the equation of a circle having its centre

on OX. The theorem of Art. 105 is therefore also true when the

l><irticle slides on <t nmifh rjmrd in a medium resisting a* the

nies of descent from rest at dotvti all chords of

ircle are equal.

108. There is anothfi m. thod of proof by which the solution of the diffe-

:il equation is evaded. We notice that if we write i = o cot (9 + ), the equation

(1) of Art. 107 becomes
,/-,T da

'"*<-'*'
whirl, the angle $ has disappeared. The initial condition* now become *-0

and dff/dt = when f0; these also are independent of 0. Hence the time of

describing any given length a is independent of 6. Bat if any value in given to *,

the equation = <r cos (9 + ) is the equation of a circle, being the radios vector.
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1O9. When a heavy body is immersed in a fluid it is partly supported by the

surrounding fluid. Let V be the volume of the body, D its density, p that of the

fluid. If the body were removed, a mass Vp of fluid would just fill the vacant

place and be supported by the pressures of the surrounding fluid. The apparent

weight of the body is therefore (I'D
-
Vp) g, and the accelerating force of gravity is

This value of g' should properly replace g when the moving body is immersed
in a resisting medium. It is sometimes called the relative acceleration.

11O. Ex. 1. Prove that when /c= 0, the formula for s in Art. 107 reduces to

= i/
a

.

This may be shown by expanding the expression in powers of K.

Ex. 2. The plane of a circle is inclined to the vertical, prove that the times of

descent down all smooth chords from rest at the highest point are equal.

Ex. 3. Two tangents AB, CD are drawn to touch a vertical circle at its

highest and lowest points A, B. A variable tangent PQR cuts AB, CD in P, R
and touches the circle at Q. Prove that the velocity acquired in descending from

rest at P to R under gravity is the same for all positions of the tangent. Prove

also that the time of descent from P to R is proportional to the length PR and the

time from P to Q is proportional to the distance of P from the centre of the

circle.

Ex. 4. If the resistance per unit of mass is KV- and the particle slide on a

smooth straight wire inclined at an angle 6 to the vertical, prove that the space a

described in time t from rest is given by e*
s

=.\ (e

bt
+ e~

bt
)
where Z>

2=*#cos 0.

111. Limiting Velocity. When a particle is projected

vertically downwards in a medium whose resistance varies as the

nth power of the velocity, the equation of motion is

dv

where g is the relative acceleration of gravity.

If the particle is projected downwards with a velocity L such

that icLn = g it is clear that dv/dt is initially zero. There is

nothing to change the velocity and the force of gravity continues

to be balanced by the resistance. The particle therefore descends

with a uniform velocity equal to L. If the particle is projected

downwards with a velocity less than L, gravity exceeds the re-

sistance and the velocity of the particle is increased. If the

velocity of projection is greater than L, the resistance exceeds

gravity and the velocity is decreased. If the particle is projected

upwards, the resistance and gravity combine to bring the particle

to rest, after which it descends in the manner just described.
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In all cases the velocity tends to become more and more

nearly equal to the velocity L given by the equation icL*=g.
This velocity i> .ailed sometimes the limiting velocity and some-

times the terminal velocity. The latter name is commonly ascribed

to Huygens. Other names are given under other circumstances.

When the body considered is a ship, the constant g may represent
the force of the engine and icv

n the resistances. The ship is said

to be at full speed when these balance each other.

112. When the body is in the beginning of its fall from rest,

the term KV" is nearly zero and is much smaller than g. The body

begins to fall nearly as in a vacuum, and the velocity at first

increases rapidly. If the resistance is so great that L is small,

the velocity will soon be so nearly equal to the limiting vel<><

that the motion will be sensibly uniform.

This result has many applications in nature. In a shower of

ruin, tin- velocity of a drop is not proportional to the time elapsed

since it began to fall. The drops, being observed some little time

after the motion has begun, move with a velocity which is sensibly

uniform and independent of the height of the cloud.

113. The magnitude of the coefficient K of the resistance

depends on the size and form of the falling body as well as on

the nature of the resisting medium. To illustrate this let u-

Mippose that, for Minilar bodies falling in similar positions in an

indefinitely extended fluid, the resistance vaiies (1) as the surface

of the body, (2) as the nth power of its velocity, and (3) as the

density p of the fluid. If I be the length of any side the surface

varies as I1
,
while the mass moved varies as l*a where <r is the

>ity of the body. The accelerating force on the body is

therefore

- l*pv
n

pv"
f-ff-v fc-'-ny-

win -iv 7 is some constant depending on the form and position

he falling body. Equating / to zero, it follows that the

limiting velocity varies as (Ir/p)". We see therefore that the

*m size of the body the less is the limiting velocity. For

example, large drops of rain tall with greater velocity than small

ones. Th. part ides ,,f a nn-t are so small and their limiting

ities so slight that the falling drops seem to have no motion.
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We have supposed that the falling body is so far symmetrical
about a vertical axis that it is not made to rotate by the re-

sistance.

114. Ex. 1. A particle falling freely from rest in vacuo acquires a velocity L
in /3 seconds. Show that the same particle, falling in a medium in which the

resistance varies as the velocity and the terminal velocity is L, will acquire half its

terminal velocity in about /T /8 seconds and two-thirds of that velocity in \^ # seconds.

To prove this we use the formulae proved in Art. 107 for r. Remembering that

L = gJK when the resistance varies as the velocity we have ir= l//S.

Ex. 2. Show that the effect of the resistance of a medium on the motion of a

heavy body is less the greater the size and density of the body.

115. Resistance =KV'. A particle is projected vertically upwards with a

velocity V in a medium resisting as the square of the velocity. It is required to

find the motion.

During the ascending motion the resistance acts downwards and the equation

of motion is

dv dv v2

s-jr-'-'p-
where L is the limiting velocity. When the particle descends the resistance acts

upwards, but since v2 does not change sign with v, the equation of motion must be

changed to

dv dv v2
V
ds
=

-d-t=-
(j+9 l7

where in both equations s and v are measured positively upwards. This discon-

tinuity occurs whenever the power of v in the law of resistance is even.

Following the second rule given in Art. 101 we express both s and t in terms of

v. We have for the ascending motion

the constants being determined by the condition that v = V when t = and s = 0.

The tune T of ascent and the space h ascended are deduced by putting r = 0.

We thus find

The time of ascent and the space ascended are less than in a vacuum, for both

gravity and the resistance join in bringing the particle to rest.

For the descending motion we have in the same way

the constants being determined from the condition that when v = 0, t=T, s = h.
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The velocities at which the particle passes upwards and downwards through any
s point of space are connected by a simple relation. Taking the given point

as the point of projection upwards, let the two velocities be V and 1". Putting
*=0in (5) we find

Eliminating h between this equation and (3) we arrive at

1 1 1

F*-Fi
=

Z*'

If v be the space descended and r the time, we find by eliminating r

<rf
See Art. 110, Ex. 4.

lie. Resistance ={". A particle is projected vertically upwards with a

velocity V in a medium resisting as the ;<th power of the velocity. It is required
to find the motion.

We write the equation for the ascending motion in the form

dv dv

It will be convenient to put v = xL. Proceeding as in the case when n = 2, we find

for the whole time T and space h of ascent

dx ;ih I'"

where the initial upward velocity is V=aL.

To find the time and space in which the velocity is decreased from aL to bL we
take the limits from b to a.

We can find superior limits to the values of t and h by making the initial

velocity V infinitely great. In this case a = 00 , and both the integrals are given in

the Integral Calculus. We then have

0T_ y gh_ y
T ~

n sin wfn
*

I?
~

n sin 2v/M
'

the former requiring n > 1 and the latter n > 2. It is remarkable that both these

limits are finite, though the upward velocity of projection may be as great as we

the descending motion it is often convenient to nitature downward* from

the highest point. We thus avoid using a negative velocity. Adopting this plan,

the equation of motion is

dv <lr

rutting v = xL as before, we find for the time and space necessary to acquire a

velocit

gT ( dx flh' _ ( xdx

T"./.I3F' /.
)

i

These integrals can be found without .liMi.-ulty when n is an integer by tisinft

method of partial fractions, see Orccnhill's Differential and Intfyral C<tlc*l*.

0. Robt-it Art. 35. The result when n has its

integral value is too complicated to be reproduced here.
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117. Ex. 1. A heavy particle is projected upwards with a velocity L in a

medium resisting as the nth power of the velocity. Prove that the whole space

(up and down) described when the velocity downwards is V is equal to LT when L
is the limiting velocity and T is the time in which the particle falling from rest in

the medium will acquire a velocity F2
/L.

/..;. 2. A particle is projected upwards with velocity L in a medium resisting

as the cube of the velocity. Show that the whole time and space of the ascent

2ir /
"

are connected by the equation s + LT= -.- .

g

The linear differential equation.

118. The Linear equation. The most important equation

of motion which occurs in this part of dynamics is the linear

equation with constant coefficients. The simplest form of this

equation is

where b and c are two constants.

When 6 = the equation represents the motion of a particle

acted on by a constant accelerating force equal to c, and the

solution is obviously
x = %ct- + At + B ........................ (2).

When b is not zero, we can simplify the equation by putting

x = c/b + ................................. (3),

we then have

|f+&f=o
...........................W-

This can be solved without difficulty by the method already

explained in Art. 97. But a simpler solution can be obtained

by following the rules for solving equations with constant co-

efficients given in books on differential equations. We assume

as a possible solution

g = A<P .............................. (5).

Substituting we find A (X
2 + b) eM = 0. The equation is therefore

satisfied if X = + V( b). If b is negative and equal to b', we

have two real values of X, either of which give a solution. The

equation is clearly satisfied by

Be-W ..................... (6),
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and this is the complete integral because it contains the two

arbitrary constants A and B.

If b is positive, X is imaginary; but remembering that an

imaginary exponential is a trigonometrical expression, we replace
the assumption (5) by

f=A sin(\t + B) ........................ (7).

Substituting we find A (- Xa + b) sin (X* + B) = 0. The equation
is therefore satisfied by X = + \/b. These two values of X give
th.> same solution, the effect of changing the sign of X being

merely that of changing the signs of the arbitrary constants A
and B. The complete integral is therefore

B

1 1 may also be written in either of the forms

(9),

(10).

119. Harmonic Oscillation. The dynamical meaning of

the linear equation is important. Consider first the cast* in

which b is positive. Putting b= ri-, we have

il '

n( + B)........................ (2).

< we notice that as t continually increases the value of x

alternates between the limits c/w
8 A. We therefore infer that

the differential equation (1) represents an oscillatory motion and

that the arc of oscillation is constant. The semi-arc of oscillation

is A and its magnitude depends on the initial conditions. I

i-arc is called the amplitude of the oscillation.

/"//</. Th< middle point of the arc is determined by
./ =c/w*, and this point is independent of th<- initial omilitiooa.

be particle is placed at rest in the position defined by tin-

value of x, the equation (1) shows that the accelerating force <

d*x/dP) is zero. Tin' middle point of the arc of oscillation it

<i position of c'/'u't
tin-in in.

v////. Win -n / is increased by 2ir/H, the values of r recur

in the same order, but when increased by irjn they recur with

opposite signs. The period of a complete oscillation it therefore
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'27r/n. This period is independent of the initial conditions. The

quantity n is called the frequency of the oscillation.

The time of a complete oscillation is the time occupied by tin-

particle in describing twice the whole arc of oscillation starting
from any point and returning finally to the same point again.
When the period is independent of the length of the arc, the

motion is sometimes called tautochronous.

Fourthly. The constant B depends on the instant from which

the time t is measured, thus if we write + a for t, nothing is

changed except that B is increased by no.

Fifthly. Let x = a
, dx/dt = v be the given values of x and

v at the time t . Writing the equation (2) in the form (9) of

Art. 118 and equating the values of x and dxjdt to XQ and v

when t = t
,
we find the values of A' and B'. The solution there-

fore becomes

x = +
(
XQ -^ )

cos n (t -t ) + - sin n (t 1
).n \ n J n

Comparing this with the solution (2) we see that

A sin B = # c/n
2
,
A cos B = vQ/n.

The semi-arc A of oscillation is therefore given by

120. Consider next the case in which 6 is negative. Writing
b = ?i

2
,
the differential equation and its solution become

d
*-n*x = c,

x = - 4 + Ae1lt + Be~nt
.

n-

First, we notice that the motion is not oscillatory.

Secondly. If A is not zero the particle travels in an infinite

time to an infinite distance from the origin. If A = the particle

after an infinite time arrives at the point determined by a? = c/ri
2
.

Thirdly. The position of equilibrium is given by x =
c/ri*.

Fourthly. The particle can change its direction of motion only

once. This change occurs when

^=n(Aent -Be-nt
)
= 0.
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This gives -2nt = \og(B/A). This is imaginary if A and B have

opposite signs, and gives only one real value of t if A and B have
the same sign. The particle can change its direction only if this

real value of t is subsequent to the beginning of the motion

>/////. If the values of x and t; are respectively x, and r, at

the time t = t
,
the value of .r at any time t is

121. When the equation of motion is

;+&*= '
.. (1).

we take as the trial solution

It is easily seen that this satisfies the differential equation if

X2 + 2a\ + fc = ............... ..(3).

6 is positive, the roots of the equation are real. Representing these by
olution is

...... (4).

where .1,, .(._,
are two arbitrary constants.

If - - 6 is negative, say = - n2
,
the two roots are - a n N/(

-
1). By an easy

reduction the solution (4) becomes

*|+-"B,*in(+BJ .(5).

where l\ , 11.. are two arbitrary constants.

If >i- -b = Q. the general solution is

~ al
(6).

Considering the solution (5) as the more important of the three, we notice that

onometrical term vanishes whenever nt + fl, is a multiple of r, the particle

therefore passes through the position defined by x=cjb at intervals each equal to

r/n. Since it necessarily passes through this point alternately in opposite

us, the interval between two consecutive passages in the same direction in

2r/n. This is called the time of a complete oscillation. The point defined bj
x = cjb is evidently the position of equilibrium.

To find the times at which the system comes momentarily to rest we pal

dxjdt = 0. This gives tan (nH /*,)
= n/a. The extent of the oscillations on each

side of the position of equilibrium may be found by substituting tbe Taints of I

< v thin equation in the expression for x -
c/6. Since these occur at a <

,1 equal to r/n we see that the amplitude of the

decreases and the successive arcs on each side of the position of equilibrium

a geometrical progression whose common ratio int" "/".
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122. The following differential equations occur in dynamics.

(1) Solve

Multiplying by sin nt, both sides become perfect differentials, hence

- sin nt - nx cos nt = /
<f> (t)

sin nt dt + A.

Multiplying by cos nt, both sides are again perfect differentials,

dx f
-r-cos nt + nxsiu nt = I <f>(t)cosntdt + B.

These two simultaneous equations give both x and dx/dt.

To solve
l

- ;j-.r = (t) we use e
nt

and e~
nt

as the two successive multipliers.

(2) When
<f> (t) is trigonometrical another method can be used. Let the

equation be

Assuming x= Msin(\t + F) as a trial solution, we see at once that the equation
is satisfied if M (-\

2 + n?) = E. Adding the solution found in Art. 118 we see that

the complete integral is

x=A sin (nt + B) + _ Xf+n2
sin (\t + F).

This method fails when \= n. In this case we take x = Mtcos (\t + F) as a trial

assumption.

We find - 2Mn = E. The complete integral is therefore

x=A sin (nt + B)- cos (nt + F).

Motion under a centre of force.

123. Central force varying as the distance. A particle

constrained to move on a smooth straight line

A is acted on by a central force tending to a

fixed point outside the straight line, whose

magnitude varies as the distance of the particle

from 0.

Let OGh be the perpendicular on the

straight line A C. Let P be the particle, CP = x. The force on

P being n* . OP, the component along PC is n2
#. Supposing the

straight line to be smooth and the motion to take place in vacuo,

the equation of motion is

d?x

M = - nx-

This is the standard form discussed in Art. 119. The particle
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therefore oscillates about C as the middle point of the arc. and the

time of a complete oscillation is 2?r/n.

To find the time of oscillation numerically the magnitude of

the force must be known at some given distance from the centre 0.

Suppose that the force is equal to gravity at a distance a, then

n*a = g, and the time of a complete oscillation is 2?r */(a/g). If

g = 82-18, the distance a must be measured in feet and the formula

gives the time in seconds.

The extent of the arc of oscillation depends on the initial

conditions. If the particle start from a point distant x, from C
with an initial velocity v measured positively from C, the whole

-equent motion is expressed by the fifth result of Art. 119.

124. /.>. Any two places on the surface of the earth are joined by a straight

tunnel. A particle dropped from one falls towards the other under the sole

attraction of the earth. Assuming that the resultant attraction tends to the

centre and varies as the distance therefrom, prove that the particle will arrive at the

second place after about 42 minutes, the radius of the earth being taken as 4000

miles.

125. l-.x. Effect of friction. If the straight line in Art. 128 is sensibly

rough, it is required to take account of the friction.

Since the normal pressure on the straight line is equal to n?h and is therefore

constant, the limiting friction is also constant. Let us represent this by /. The

equation of motion is therefore

notice that the ffictional accelerating force acts opposite to the direction of

motion, so that the sign must be negative or positive according as the particle U

2^ D' C D *

moving in the direction in which x is measured or the opposite. The equation

therefore pretent* the discontinuity which to frequently occur* whenever friction fcu

'ken account of.

Let the particle start from rest at A where (7/1= a. Initially the resolved

attraction is n-<t and unless n'a is greater than the friction /, the particle will not

move. Supposing this inequality to hold we write the equation in the form

The motion therefore from A towards C is the same at if the centre of fores WOT

displaced a distance C/>=//n
a towards A. The particle comes to rest at a point

A' on the other side of D where DA' = AD. On the return journey we take CUf

also equal to //' and the particle moves at if IX were the centre of force. Thus

the centre of force is alternately moved at each oscillation a constant

5
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ulways opposite to the direction of motion. The friction reduces the extent of

each successive semi-arc of oscillation by 2//w
2
. The particle comes finally to rest

when the extent of the semi-arc is less than //n
2

.

126. Resistance of the air. If the motion take place in

the air its resistance must be allowed for. As a sufficient illustra-

tion of the general effects of this force, let us suppose that the

resistance varies as the velocity. Excluding friction the equation
of motion is then

d*x dx

Assuming n> tc the solution is (Art. 121)

x = Ae~Kt
sm(pt + B)..................... (2),

where ^
2 =w2

AT. The constancy of the period of oscillation is

therefore unaffected by the resistance of the medium, Art. 121. The

time of oscillation is however longer than in a vacuum.

The successive arcs on each side of the position of equilibrium

decrease continually in geometrical progression and vanish only

after an infinite time.

In many cases the resistance of the medium is very slight

compared with the other forces acting on the particle. The

quantity K is then small, and we see that the period of any one

oscillation differs from that in a vacuum by the squares of small

quantities. In using the equation (2) we must however remember

that when the position of the particle after a great many oscilla-

tions is required we cannot regard pt as the same as nt
;
for though

p and n differ by a very small quantity, that difference is here

multiplied by the time t.

127. By making observations on the lengths of the arcs of

oscillation we may test the correctness of the assumed law of

resistance. A convenient method of trying the experiment is to

use the particle as a pendulum. It may be shown that when the

oscillations are small the resolved action of gravity represents the

force ri*x while the resistance is 2/cdx/dt. The measurements

show that the successive arcs do decrease in geometrical pro-

gression when the arcs are small, but the decrease follows another

law when not small. This, as Poisson remarks, is a justification of

the statement that for small velocities the resistance varies nearly

as the velocity.
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The common ratio of the geometrical progression is -**. By
measuring successive arcs the numerical value of * can be found

128. Discontinuity of resistance. When the resistance
nines as the velocity the analytical expression 2icv changes sign
with v. It therefore represents the retardation due to the re-

_,'
medium both in sign and magnitude. If the resistance

varies as the square (or any even power) of the velocity, the

analytical expression 2/cv2 represents the retardation in magnitude
nly. Whenever the particle changes its direction of motion it

will then be necessary to change the sign of *. Thus a d\-
rottt utility is introduced into the equations similar to that which
occurs when friction acts on the particle, Arts. 125 and 1 1 >

120. Ax. 1. A particle oscillates in a straight line under the action of a
1 force tending to a fixed point

<
'

on the straight line and varying as Jf
the distance therefrom. Supposing
the motion to take place in a medium

resisting as the square of the velocity,

find the relation between any two

successive arcs on each side of C.

Supposing that the particle is

. in the negative direction (Art. 128) the equation of motion is

= - n*x + KV*.

By Art. 103 this gives v*e~***=C+
n
~(x+*\ e'^". If xt , x, be two

arcs, x, being negative, we have
V^'^a" )

*"*"*' =
(*s

+ o )
''****

We notice that this relation is independent of the strength of the attractive force.

To interpret this relation we trace the curve y = (*
+
2c)'~*"-

If the particle

start from rest at any place A it will come to rest again at A' where the ordinal*.

of A and A' are equal. Taking CB = CA', the third point of rest is at a distance

CIV from C on the side of C opposite to A\ the ordinates of B, B1

being equal.

and RO on. Thus if the particle start from rest at an infinitr dittmnet from O It

willyinc come to rest at A', where G'A'=l/2* numerically .

k-eneral character of the motion is that the successive arcs decrease rapidly

at first, but afterwards become more and more nearly equal, the notion never

ceasing.

lie abscissa of the point of inflexion, CI = CM

2. Prove that the times of describing all chords of a circle starting from

rest at the same point A under the action of a centre of force situated on the

diamet' M .1 and varying as the distance are equal. The chords are to be

regarded as smooth and the motion to be in a vacuum.

:. .'
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Ex. 3. A heavy particle whose mass is m is suspended from a fixed point O by
an elastic string whose unstretched length is a. If the particle oscillate up and

down in a vacuum, prove that the complete period of an oscillation is 2ir x/(ma/),
where E is Young's modulus.

Ex. 4. A particle oscillates in a straight line in a medium whose resistance

per unit of mass is K times the square of the velocity. There is a centre of force

situated in the straight line whose attraction is /A times the square of the distance

from the centre of force. If a and 6 are the distances from the centre of force of

two successive positions of instantaneous rest, and p is not zero, prove that
~ 2lta

=l. [Art. 135.]

130. The inverse square of the distance. A particle,

constrained to move in a straight line, is acted on by a central

force tending to a fixed point external to the line and varying

inversely as the square of the distance therefrom. It is required

to find the motion.

Let OC be a perpendicular on the straight line, OC=h. Let

P be the particle, CP = x,OP = r. See
fig.

of Art. 123. Let the

angle POC=<f), then sin</>
=

#/r. The accelerating force on P
being yu,/r

2
,
the component along PC is found by multiplying by

3sin $ and is therefore /^/r
3

. The equation of motion is

5~? ............................<

Since r2 = A2 + #2
,
we have rdr = xdx. Hence

fo --'**, .-. = <?+?.
r2 r

If the particle start with a velocity u at some point A distant a

from 0, we have

(2).

If the particle is projected from C along GA with a

velocity u greater than *J(2fjb/a), it is clear that the velocity v

cannot vanish or change sign. The particle therefore will move

continually away from the centre of force.

131. When the centre of force lies on the straight line of motion, the time

occupied by the particle in travelling from the initial position A to any point P
can be found without difficulty. We put

x= b cos2 6, :. dxjdt
- 26 sin 6 cos de/dt.

The equation of motion is
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\V. notice that x begins at x = a with dxjdt initially positive; x then increases

until djr/dt = 0, i.e. until x= b. At this point the particle begins to return and

dxjdt becomes negative. To represent these changes we make 6 begin at 9- -ft
where cos /3= + N/(a/6) because this makes dxfdt positive when x-a. We then

make 6 increase through zero and finally become 4 * when the particle arrives at

the centre of force. Thus the two times at which the particle passes through any
point r are distinguished by the sign of 6. Since, according to this arrangement,
c continually increases with the time we give the positive sign to the radical in the

expression for dd/dt. We then find after integration that the time from 9 -ft

to 6 is

The time from rest at a distance x= a follows from the preceding or may be found

independently. We have

the limits being x= a to x. Putting x= a cos3 9 we easily find that the time < of

moving from x = a to x is

The time of arriving at the centre of force starting from rest at a distance a is

found by putting 6= ^r. The result is
^ \/!jr

'

132. />. 1. A particle falls from rest at a point A whose altitude above the

surface of the earth is equal to the radius. Show that the velocity on arriving at

the surface is equal to that acquired by a particle falling from rest through half

that space under a constant force equal to </, where g represents gravity at the

surface of the earth.

Notice that if /u/r- is the attraction of the earth, a the radius, nja*= g.

1. If a particle fall from an infinite distance towards the earth, prove that

the velocity at the surface is equal to that acquired in falling from rest through a

space equal to the radius under a constant force equal to g.

3. If any heavenly body were isolated in space, prove that the least

velocity with which a particle must be projected from its surface that it may not

fall back on the body i */
(j,

. ^-) feet per second, where If and are the

msssns, r and a the radii of the body and the earth. The resistance of the

atmosphere is to be neglected.

Show that for the moon this velocity is about one and a half miles per second.

taking its mass and radius to be ^ih and Jth of the mas* and radios of the

earth, and the radius of the earth to be 4000 miles.

133. I .r. 1 A partial* constrained to move along a nmgkitraigkt lint whoee

coefficient of friction is /, i* acted on by a force tending to O and varying as the

inverse square. Prove that if the particle start from rest at any point A, it will

next come to rest at a point B such that OM bisects the angle A OH. where If is

which th. resolved attraction is balanced by the

liinitir:
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Following the same notation as in Art. 130, the equation of motion takes the

form
do _ M* , ith

"^--^+/7-
Multiply by dx and put .r

-
/* tan 0, where represents the angle POC. Inte-

grating as before, we find

ua =
-y- (cos <f>

- cos
<f> + /sin - / sin

)

-T 8 '

2

where , c are the angles COA, COM, so that /=tane. It is evident that r =
when (0 + )

= e.

.Ex. 2. If the force to O vary as the inverse fourth power of the distance and

the particle starting from rest at A come to rest again at B, prove that the angles

COA, COB are complements of each other when sin 2 (COA) = (4f- 2)/(/+l).

Thus if /= a particle starting from rest at an infinite distance will just reach C.

Ex. 3. A particle is constrained to move in a straight rough tube CA, and is

acted on by a central repulsive force X/r, where r is the distance from the centre of

force and OCA is a right angle. The particle is projected from A away from C
with a velocity v ; prove that if it come to rest at a point P, the angle COP is a

value of 6 satisfying the equation //,0-logsec0= v 2
/2X, where n is the coefficient of

friction. [Coll. Ex. 1893.]

134. Ex. 1. The earth and moon being held at rest, find the least velocity

V with which a particle must be projected from the moon to reach the earth.

Let a be the radius of the earth, b =&a that of the moon, 60a their distance

apart from centre to centre. Let E and ^TE be the masses of the earth and moon.

If x is the distance of the particle from the centre of the moon, the equation of

motion is

d?x_ E
_ _!_

E
dt*~(Wa-x)* 81 x*

-

This equation can be integrated by the rule of Art. (J7. The constant of inte-

gration can be found in terms of V by remembering that dx/dt= V when x= b.

There is evidently a certain point between the earth and moon where the

attractions of these bodies balance each other. By equating the right-hand side of

(1) to zero, this point is easily seen to be at a distance 6a from the centre of the

moon. If V is such that dxjdt vanishes when x= 6a, it follows that a velocity of

projection ever so slightly greater than V will carry the particle to the earth.

Remembering that Eja?=g and taking a to be 4000 miles, we find that r is

approximately 1 miles per second.

Ex. 2. If the earth and moon were placed at rest, they would fall towards

each other under the influence of their mutual attractions. Supposing the initial

distance to be equal to their present distance from each other show that they would

meet after about four and a half days.

Consider their relative motion. If E, M be the masses of the earth and moon,

the attraction on the earth per unit of mass is M/r*. By Art. 39 we apply this,

reversed in direction, as an acceleration to both bodies. The earth is thus reduced

to rest, while the moon is acted on by the two accelerating forces Mjr
z and A'/r-.
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The whole accelerating attraction on the moon causing the relative motion IN

therefore (E + M)lr*. We must also apply to each an initial velocity equal and

opposite to that of the earth (Art. 10), but this, in oar problem, is zero. The
time is then found as in Art. 131.

Ex. 3. Two mutually attracting spheres, each one foot in diameter, and the

density of each the same as the mean density of the earth, are placed at rest in a

vacuum, the distance between their surfaces being one quarter of an inch. Prove

that they will meet in less than 250 seconds. This problem is due to Newton, its

history is given in Todhunter's History of the Theory of Attraction*, Ac., Art. 726.

I .r. 4. Two particles A, B, mutually attracting each other according to the

Newtonian law, are placed at rest at a given distance a apart. The particle B is

now constrained to move away from .4 along the straight line joining them with a

uniform velocity u, show that A will catch B up if i
a
<2/*/a where /* is the mass

of /;. Show also that the time will be (T + 2/8 + sin 2/3) ^ft*/2P where corf/3 = a/6

and 2/i/6=2M/a - u2 . [Reduce B to rest, see Art. 131.]

/ j-. "). A body of mass M is moving in a straight line with velocity 17, and is

followed at a distance r by a smaller body of mass m, moving in the same line with

a smaller velocity u. The two bodies attract each other with a force varying as

the inverse square of the distance and equal to K for two unit masses at unit

distance. Prove that the smaller body will overtake the other after a time

where * (AT+ ro) (1
-
w) = ( 17

-
M)- >

. [Math. Tripos, 1887-1

135. Discontinuity of a centre of force. A particle

constrained to move on a smooth straight line is acted on by a

force X tending to a point C situated on the line and varying an

the Tith power of the distance therefrom. It is required to find

i notion.

Let the particle P start from rest at A, CA = a, CP = ./-. Th.

of motion is

dv

-*" 2),

the constant of integration being determined by the con<

o when x= a. If n = 1 the integral takes a logarithmic

form.

1 1 u is an odd integer this equation shows that the velocity is

again zero at a point A' determined by --o. The particle

oscillates on each side of C, the amplitudes on each side

;
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If n is an even integer, the expression for v vanishes for no

real value of x except x a. Since the particle must obviously
oscillate on each side of C through equal arcs, it follows that the

equation (2) cannot represent the dynamical facts of the problem.

The reason is that the force X (as given in the question)
varies as the nth power of the distance taken positively and always
acts towards C. Now # is the distance of the particle from G
taken with its proper sign. We must therefore write

X =
->jLX

n or +iJL(-x)
n
.................. (3),

according as the particle is on the positive or negative side of the

origin C. These are identical if n is odd and in that case the

equation (2) holds throughout the motion. If n is even, different

equations of motion hold on each side of the origin.

The particle arrives at C with a velocity v obtained by putting
x in (2). This is a finite velocity if n is positive. After

passing (7, the equation of motion (1) must be changed to

vdv/dx = /j,(-x)
n =

fjLx
n
..................... (4),

since n is even. We then find

(5),

the constant of integration being found by the condition that (2)

and (5) must agree when x = 0. The equation (5) shows that v is

again zero when #= a, so that the particle in its oscillations

describes equal arcs on each side of C,

After the particle has passed through C on its return journey
the equation of motion resumes the form (1). The integration is

the same as before, but the constant C must now be determined

from the condition that the value of v at the origin is the same as

that given by (5). The resulting value of vz
is however the same

as that given by (2), so that the motion on the positive side of the

origin is always that represented by (2), and the motion on the

negative side that represented by (5).

136. The time of travelling from A to C is given by

dx/2g ft

V n + 1 J o

To integrate this in terms of gamma functions we write xn+i = an+1 or =an+x
/
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according as n 4- 1 is positive or negative. We then have

1. A particle starts from rest at a distance a from a centre of force which

attracts as the inverse cube of the distance. Show that the time of arriving at

the centre is

2. A particle starts from rest at a distance a from a centre of force which
- inversely as the distance. Prove that the time of arriving at the centre i*

Small Oscillations and Magnification.

137. Small Oscillations. A particle, constrained to des<

a straight line, is under the action of a force tending to a point u
rial to the straight line and varying as some given function

of the distance from 0. It is required to discuss the motion

when the arc of oscillation decreases without limit.

Let OC be a perpendicular on the straight line, P the pan
OC=h, CP = x, OP = r. Let the accelerating force be

piation of motion is therefore

d*x .. x

Sine.- r- = //--far
2
,
we can expand xf(r) in powers of x. The

<

I
nation then takes the form

d*x/dt*
= A& + <4r*r* -I-

4,, ^ 2 > &c. are known constants. Supposing the series to

be convergent when x decreases without limit, we may ultimately
mit all the terms after the first which does not \.mi-!i. Assum-

ing x to be initially small we proceed to discuss the subsequent
motion.

\Vhrii .1, is not /..TO. t!n equation reduces to

d*x/dP = A ,./

Tli-- mot inn represented by this equation has been discussed in

119, If AI is negative and equal to -n, the time

<-omplrt<- Ms<-ill;iti,,M is 2w/n. It appea t hat when th<-

f oscillation is continually diminished. th<- displacement

ty of the particle are ultimately zero, but tin In.,
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is finite. This finite time is called the time of a small oscillation,

and the equilibrium position is said to be stable.

If A l is positive, we know by Art. 120 that the value of x

contains a real exponential and that the motion is not oscillatory.

As the displacement x does not remain small we cannot continue

to reject the higher terms of the series (2) as compared with the

first. The subsequent motion is not represented by equation (3).

The equilibrium position is then unstable.

If A l
= 0, let the first power which does not vanish be the /*th.

The equation is then ultimately

d*x/dt* = A nx
n
........................... (4).

This equation has been discussed in Art. 135. If A n is negative
the time of oscillation has been found in gamma functions, with a

factor a~* (n
~

l

\ where a is the semi-arc of oscillation. The limiting

time of oscillation is therefore infinite if n is positive and greater

than unity. If An is positive, the value of x becomes great and

the higher powers of x cannot be neglected.

138. Ex. 1. If Saturn's ring were rigid and held at rest show that the

position of Saturn placed at its centre would be one of unstable equilibrium for

displacements in the plane of the ring. If the force between the ring and the

planet were repulsion instead of attraction that position of Saturn would be stable

and the time of a small oscillation would be 27r x/(2a
3
/il/), where a is the radius of

the ring and M its mass.

Show also that the time measured in seconds is 27r N/(2a
3
/?i&

2
#) where n is the

ratio of the mass of the ring to that of the earth, b the radius of the earth, and g

is gravity at the surface of the earth, a and b being measured in feet.

To prove this, we let x be the distance of Saturn S from the fixed centre C of

the ring. Let P be a point on the ring, PCS = 0, SP= p. The attraction on S in

the direction CS is then seen to be F=~f^
acosS-x

Substituting

p=a-xco80, expanding in powers of x\a and integrating, we find F=Mxj2a?.
This force being positive, the equilibrium is unstable. Keversing its sign the time

of a complete oscillation follows by Art. 123. The time in seconds is found by

using the equation E/&
2
=#, see Art. 134.

Ex. 2. If the ring attract Saturn, show that the central position of the planet

is stable for displacements perpendicular to the ring, and that the time of a small

oscillation is

Ex. 3. A particle is in equilibrium under the influence of two centres A ,
B of

repulsion each varying as the inverse nth power of the distance. Prove that the

position of equilibrium is stable for displacements in the straight line All and that

the time of a small oscillation is 2n-
/v/(ai/n(a + i)F), where a, b are the distances

of the particle from A and B, and F is the accelerating repulsion of either force on

the particle in the position of equilibrium.
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139. Magnification. A particle, oscillating in a straight
line under the action of a centre of force whose acceleration is

n*x, is also acted on by the two accelerating forces X = E cos \t,

Y F MSfjLt. It is required to find the motion.

The equation of motion is

d*x/dt*
= - n*x + E cos \t + F cos jtt.

The solution of this, by Art. 122, is

x = A cos (nt + B) + E' cosX* + F' cos fit,

where E ' =-^ *" = -=?-
n* X* n* /A*

If the particle start from rest at a distance a from the origin

when t = 0, we have A = a - E' - F' and B = ().

The motion of the particle is therefore compounded of three

oscillations, one has the period 2ir/n due to the central force, while

the other two have the same periods, viz. 2-7T/X and 2-7T//A, as the

forces X and Y.

This example is important because it shows that the dynamical

effects of oscillatory forces are not necessarily in proportion to their

'tudes, but depend also on their periods. Thus the ratio of

E' to F' is a function of \ and /* as well as of E and F.

If the period of the force X is nearly equal to that of the

oscillation caused by the central force, n1 Xs is small, while, if

no such near equality hold for the force F, na
/i* is not small.

It tullows that if E and F are nearly equal, E' is much greater
than /". If also E and F were so small that the effect of Fon

notion of the particle were insensible, that of X might still

iy great. The general result is, that of two forces X, F, that

one produces (caeteris paribus)'t/te greatest oscillation whose period

is most nearly a/ mi I t<> the period of the oscillation due to the

'I force.

< >n the other hand w. notice that a near equality between the

periods of the forces X and F has no dynamical -i^nitn ance. The

reason is that these forces being explicit functions of the time do

not modify each other, each producing its own effect Bu

vi /. -n'#, depends on the abscissa of the particle

and thi- is more or less altered by the action of the forces X and

F. The solution shows that the alteration is considerable when
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the period of either X or Y is nearly equal to that due to the

central force alone.

If the period of X is exactly equal to that of the oscillation

due to the central force the solution of the differential equation

takes a different form. By reference to Art. 122 we see that

-ip

x = a cos nt + =- sin nt + F' cos pt>
25fv

so that the amplitude of the oscillation becomes very great as t

increases.

We may also notice that if \ is very great the terms which

contain E' as a factor are very small. It follows that an oscillatory

force whose period is very short produces very little effect on the

motion of the particle.

140. As an example of these effects consider how great an oscillation can be

generated in a heavy swing by a series of little pushes and pulls if properly timed.

If we push when the swing is receding and pull when it is approaching us, the

motion is continually increased and the amplitude of the oscillations becomes

greater at each succeeding swing. Such a series of alternations of push and pull

is practically an oscillatory force, such as X, whose period is exactly equal to that

of the swing. If however the alternations of push and pull follow each other at

an interval only nearly equal to that of the period of the swing, a time will come

when the effects are reversed. The push will be given when the swing is approach-

ing us and the pull when the swing is receding. Thus, though a great oscillation

of the swing is at first produced, that oscillation will be presently destroyed only to

be again reproduced and so on continually.

141. Second approximations. In determining the small oscillations of a particle

in Art. 137, it is explained that the terms containing z2
,
&c. are usually neglected.

These terms are indeed very small in the differential equation, but we know from

Art. 139 that their effects may in certain conditions be so magnified that they

become perceptible in the value of x. It is therefore sometimes necessary to

proceed to a second or a third approximation before we can find a value of x which

represents the actual motion. Some examples of this will be given later on, but

the reader will find the theory given at length in the Author's Rigid Dynamics,

vol. ii. chap. vn.

142. Ex. A heavy particle P is suspended at rest from a point A by an

elastic string whose initial and unstretched length is a. The point A at the time

t= begins to oscillate up and down, so that its displacement (measured downwards)

at the time t is c sin \t. Prove that the length of the string at the time t is

a +^ (1
- cos nt)

-
~js sin nt + ^tf sin Xf

Discuss the interpretation of this result (1) when X is nearly equal to /*, and (2)

when X is very great.

Notice that if d^xjdt'
2 is to be the acceleration of P, x must be measured from a

point fixed in space, say the initial position of A.
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Chords of quickest descent.

143. To find the straight lines of quickest and slowest descent

in rest at a given point to a given curve. The straight line

is supposed to be smooth and the motion to be in vacuo.

The solution of this problem depends on the theorem that

the curve which possesses the property, that the times of descent

R
Fig. 1. Fig. 2.

down all radii vectores from rest at are equal, is a circle having
for the highest or lowest point. See Art. 106.

Describe a circle having its highest point at and touching
the given curve in some point P. There are two cases, according
as the circle touches the given curve on one side or the other.

These are represented in figures (1) and (2).

If OQ be any chord cutting the circle in R, the time down OP
is equal to the time down OR and is therefore less than the tim.-

down OQ in
fig. (1) and greater than that time in

fig. (2). Thus

nl* is the chord of quickest or slowest descent according to the

mode in which the circle of construction touches the given

1 1 C is the centre of the circle, the angles CPO and COP are

equal. Sin< , CO is vertical the chord of quickest or slowest descent

from rest at meets the given curve at a point P such, that OP
bisects the angle between the vertical and normal at P.

It the position of a point P on a given curve is required

such that tin- time of descent from P to a given point is a

Minn <>r minimum, we follow the same construction except
that is to be the lowest point of the circle of construction

instead of the highest. The result is that the particle must

start from a point P such that PO bisects the angle between

th vertical and normal at P.
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144. To find the chords of quickest and slowest descent from
rest at one given curve to another given curve.

Let PQ be the required chord. Then since the time down

PQ is less than the time down am

neighbouring chord drawn from P to

the other curve, PQ must bisect the

angle between the normal and vertical

at Q. Similarly by fixing Q and varying

P we see that PQ must bisect the angle

between normal and vertical at P.

The points P, Q are therefore such

that they satisfy these two conditions,

(1) the normals at P, Q are parallel,

(2) the chord makes equal angles with each normal and the

vertical.

145. To find the chord of quickest descent from rest in a medium whose,

resistance varies as the velocity we use the same construction, because the times

of descent down all chords of a circle from rest at the highest point are equal. Art.

107.

If the resistance vary as the square of the velocity the curve which possesses

the property of equal times for the chords is not a circle; see Art. 110, Ex. 4. The

geometrical construction is therefore inapplicable.

146. If the chords of quickest or slowest descent are rough we slightly modify
the rule. To find the rough chord of quickest descent from to a given curve we

describe a circle to touch the given curve in some point P, but such that the

diameter through makes an angle with the vertical equal to the angle of friction,

Art. 105.

The result is that the required chord meets the curve at a point P such that OP
makes equal angles with the normal at P and a straight line inclined to the vertical

at the angle of friction.

147. Ex. 1. A point A and a straight line EG are given in the same vertical

plane. Show how to draw (when possible) a straight line from A to BC, so that

the time of descent from rest under gravity may be equal to a given time t.

When there are two such lines, intersecting BC in P and Q, prove that the radius

of the circle described about APQ is gt
z

.

Ex. 2. Two parabolas are placed in the same vertical plane with their foci coin-

cident, axes vertical and vertices downwards. Prove that the chord of quickest

descent from the outer to the inner parabola passes through the focus and makes

an angle equal to JTT with the axis.

The normals at the extremities of the chords are parallel and the parabolas are

similar. The chord therefore passes through the centre of similitude, i.e. the

focus S. If PG be a normal, the second condition of Art. 144 shows that the tri-

angle SPG is equilateral, i.e. each angle is equal to &ir.
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Kx. :*. Find the smooth chord along which a particle most travel starting from
rest at some point on one given curve and ending at another given curve, so that

the velocity acquired ma}' be a max-min. The force acting on the particle tend*

to a fixed centre O and varies as some function of the distance from O. The remit

is that if P be either extremity of the required chord, either the force is zero at /'

or (>/' H a normal to the given curve at P.

To prove this, let the central force be /'(r). We then find v*= 2/(r1)-y(rs )

where r,, r2 are the distances of the extremities 1\ Q from 0. Fixing Q let us

vary /' along the arc (as in Art. 144), then rft?
a
/d = 0. Hence /' (rJdrJdt^Q, i.e.

the component of the central force along the tangent to the curve is zero.

/.>. 4. Prove that the smooth chord of quickest descent from rest at one

:rde to another given circle when produced passes through the highest point
of the first circle and the lowest point of the other.

e also that the smooth chord of longest descent between the same two
is either a horizontal straight line or (when produced if necessary) psssos

through the lowest point of the first circle and the highest of the other.

>. Prove that the locus of the points from which the times of descent to

three given points in space are the same is a rectangular hyperbola. Prove also

that the locus of the points from which the times of shortest descent to three equal

spheres, given in position in space, are the same is a rectangular hyperbola.

[Math. Tripos, 1886.]

'). Prove that the rough chord of quickest descent from rest at some point
on a given straight line to some point on a given circle (not intersecting), (1) when

produced passes through a point I> on the circle such that a particle placed at B is

in equilibrium with limiting friction, (2) bisects the angle between the diameter

through B and the perpendicular from D on the given straight line.

7. Heavy particles slide down chords of a circle whose plane is vertical

starting from rest at the highest point A in a medium resisting as the square of

the velocity. Prove that the chords of slowest and quickest descent are the vertical

diameter and a chord making an infinitely small angle with the horizon.

-e results may be deduced from the formulae given in Art. 115, but the

following line of argument is worth noticing. Let AB = 2abe the vertical HiamstSf,

AQ a chord making an angle 6 with .1 /.', then AQ = t2aco*6. We have to find the

time of describing 2acos0 from rest with an acceleration g cos - n (dxjdt).

.: x = cos0, this time is equal to that of describing 2a from rest with an

acceleration g
- K cos (d/</ icuo, where =0, this is independent of 9

and therefore all chords are described in the same time. Also this time is increased

presence of the resisting medium because the acceleration is thereby

.< increase of time is zero when oos 0=0, i.e. <*=$, becomes

greater as cos 9 is greater and is greatest when cos*=l. i.e. = 0. The time of

descent therefore increases as 9 passes from J to 0.
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Infinitesimal Impulses.

148. When the effect of an impulse acting on a body is

required, we commonly disregard all finite forces which act

simultaneously with it. The duration T of the impulse being

infinitesimal, Art. 80, a finite force j^ can generate only a mo-

mentum FT which vanishes in the limit when compared with

the finite momentum communicated by the impulse. If, however,

the impulse is itself very small these may be comparable in

magnitude and it will then be necessary to take account of both

forces in the same equation of motion*.

This generally happens when the mass of the body changes

during the motion.

149. Let a body of mass M whose resolved velocity parallel

to x is v be acted on by a finite force X. Let this body lose a

small portion ra = dM of its mass in each element of time dt. It

is required to find the motion.

The momentum at the time t is Mv, and the gain in the

time dt is d(Mv\ In this time the force increases the linear

momentum by Xdt, while the momentum lost by diminution of

mass is mv. Hence

.'. M=X ............... (1).

Here there are no impacts ;
the particles merely separate with

their common velocity without mutual action.

If X = mg, the equation becomes dv/dt
=

g, and each portion

moves parallel to x with an acceleration g.

Next, let us suppose that the body gains a mass m = dM in

the time dt and let the resolved velocity of this increment before

it is attached to M be v'. The total gain of momentum is now,

Xdt due to the force and mv' due to the impact produced by the

sudden junction of the masses M and m with different velocities.

* Problems on infinitesimal impulses were solved in the lecture room of the

late Mr Hopkins as long ago as 1850. A problem of this kind was set in the

Smith's Prize examination in 1853 by Prof. Challis, and a solution given in Tait

and Steele's Dynamics. Another was proposed in 1869 by Prof. Cayley who

published the solution in the Mathematical Messenger in 1871. Two problems were

also solved in the Quarterly Journal in 1870 by Dr Besant.
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The LMju;itin .f motion is therefore

d(Mv) = Xdt + v'dM ..................... (2).

1 1 /' = v this reduces to the former result.

15O. / r. 1. A uniform chain of mass Jf, and length I, is coiled up on a

small horizontal ledge at the top of a plane, inclined at an angle a to the horizon,

and has masses .Va , J/s fastened to its two ends. If M., is gently poshed off the

ledge, prove that the velocity of M3 just before it leaves the ledge is r', and just

t>", where

)
'

[Coll Ex. 1897.]

Let x be the distance of the lowest point of the chain from the edge, m the

mass of a unit of length of the chain. The momentum at the time t is (.!/ + mx) r.

In the time <lt a mass mdjc without velocity is taken from the ledge and added to

the moving length. Also gravity adds a momentum (M + war) g'dt, where g'=g sin a.

. (1).

To make the formation of this equation more clear, let the coil be at a abort

distance a from the edge, and let the edge be rounded off in a circular arc of

radius />. We here only require the limiting case when both a and 6 are zero. As

each element passes over the edge, the velocity is at first horizontal and the change
of direction is effected by the normal pressures at the rounded edge. The

momentum generated by the weight of the chain on the rounded edge is ultimately

zero since the radius b can be made as small as we please.

To integrate (1) we multiply both sides by (M + mx) r, then remembering that

..... ....

Since x and v vanish together C = - .I/,
3

. When all the chain has left the

ledge x=l, and

At tin- instant there i- an impact, the tension acts on Af, horizontally, hanot if

v' be the velocity of J/a and the chain jut before J/, reaches the edge

M (4).

The maas M3 immediately reaches the edge with a horizontal velocity r', while

the chain is moving along the plane with an equal velocity. Than it tbcrtforv

another impact, the component of momentum .Vxr'nina perpendicular to UM
chain remains unchanged, while the component .!/,' cos a is joined to that of the

chain. If u be the common velocity of tf, and the chain parallel to the plane just

after JT, lias left the ledge,

*"*=+(yiina)f

The equations (4) and (5) give the required result

K. P.

*}
(
.
}

I
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/>. 2. A chain of length / is coiled at the edge of a table. One end is

fastened to a particle whose mass is the same as that of the whole chain. The

other end is put over the edge. Prove that immediately after leaving the table the

particle is moving with velocity Wd.'/O- [Coll. Ex. 1896.]

Ex. 3. A mass M is attached to one end of a chain whose mass per unit of

length is i. The whole is placed with the chain coiled up on a smooth table and

M is projected horizontally with a velocity V. Prove that when a length x of the

chain has become straight, the velocity of M is MVftM + mx).

[Cayley, Math. Messenger, 1871.]

K.I-. 4. A uniform chain of length I and mass ml is coiled on the floor, and a

mass MIC is attached to one end and projected vertically upwards with velocity

J2gh. Prove that, according as the chain does or does not completely leave the

floor, the velocity of the mass on finally reaching the floor again is the velocity

due to a fall through a height {2/
- c + a3l(l + c)*\ or a - c ;

where as= c3 (c + 3/t).

[Coll. Ex. 1890.]

When descending each portion moves with a uniform acceleration //, as explained

in Art. 149.

Ex. 5. A chain brake is used at railway depots for arresting runaway trucks,

consisting of a coil of chain between the metals, having a hook at one end so

placed as to catch on to the axle of the truck. If the mass of the truck be equal

to that of a length / of the chain, less than the whole length, then the truck

running on the level with velocity V will be stopped when it has dragged a length ,r

of chain over the rough ground, where V-//j.g
= ^ (2x + Sl) x

2
/l

2
.

[Coll. Ex. 1897.]

Ex. 6. A weight W is connected with a coil of heavy chain by means of a fine

weightless thread passing over a smooth peg above the coil which rests on a table ;

if W be allowed to fall a height h whereupon the thread becomes tight, find the

motion, and show that if w =3W then in setting the coil in motion energy to the

amount hWwl(W+w) is dissipated. [Coll. Ex. 1887.]

Ex. 7. Ham is falling vertically with a uniform velocity of 20 feet per second

at the rate of two inches depth per day on a cart with a cylindrical cover of semi-

circular section and horizontal axis. Prove that, if the cover of the cart is 10 feet

long and 6 feet in diameter, the resultant pressure on it due to the impact of the

rain is about the weight of one-twelfth of a cubic inch of water. [Coll. Ex. 1895.]

Theory of Dimensions.

151. Many theorems follow at once from some simple con-

siderations on the dimensions of the quantities with which we

are dealing. Each side of an equation must be of the same

dimensions in space, for we could not have, for instance, an area

equal to a length. Again one side of an equation could not be

the square of a time and the other side a cube, and so on.

In dynamics we are concerned with the four quantities space,

time, mass, and force
;
but the dimensions of these quantities are
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related that force is mass . space^time)
2
. Taking into account

this relation we have the general principle that both sides of

every equation must be of the same dimensions in regard to

i I . -pace, (2) time, (3) mass.

152. As an example let us apply this principle to the following problem already

ronsi<lrrfil in Art. 136.

A particle starts from rest at a distance a from a centre of force whose acce-

lerating force at a distance .r is /LUC". To find the time T of arriving at the centre

of force.

It is clear that T is some function of a and n, n being merely a number without

diint -n-ii-ii-. Kxpandin;.' 7' in powers of a and /* we have

T=2Aa*>n<i

Now the accelerating force /ur* is of the dimensions space/(time)
s

, hence M i

1 - n dimensions in space and - 2 in time. We also notice that a is one dimension

in space and none in time, while T is one in time and none in space.

Considering the equation (1) and counting the dimensions of each side first in

space and secondly in time, we have

0=p + (l-n)g, l=-2</ ,2).

Hence q= -
} and p = (1

-
n). As these equations give only one set of values

to />, q, the equation (1) contains only one term, vix.

T= AaUl
-**fi-* ..(8).

It follows that the time of arriving at the centre of force O varies as the

.\ (1
-
n)th power of the initial distance. If the central force vary as the distance.

n = 1 and the time of arrival at O is the same for all initial distances; a theorem

which has been proved in Art. 136 by integrating the equation of motion. If the

central force vary according to the Newtonian law, = -2 and the square of the

n :.'! varies as the cube of the initial distance, a result in accordance with one of

Kepler's laws.

symbol A represents a number and as it has no dimensions its magnitude
cannot be deduced from the theory of dimensions.

153. />. 1 A particle moves with an acceleration //. prove that the velocity

acquired in describing a space * varies as N/(<7), and that the time varies as </(*/f)

1. A particle starts from rest at a given distance from a centre of force

whose attraction varies ax the distance and moves in a medium whose resistance

<H as the vi I 'rove that the time of arriving at the centre of force to

M I. pendent of the initial distance. See Art 196.

:t. A particle P moves from rest under the action of a constant accelerat-

ing force / and a centre of force whose attraction is M times the distance, both

ing to the same point O and the initial distance OP=<i. Prove that

r, -j



CHAPTER III.

MOTION OF PROJECTILES.

Parabolic Motion.

154. General principle. The particle moves under the

action of a force which, being fixed in direction and magnitude,
is independent of the position of the particle. It follows that all

the circumstances of the motion parallel to any fixed direction

are independent of those of the motion parallel to any other

direction. These circumstances may therefore be deduced from

the formulae for rectilinear motion by taking account solely of the

resolved initial velocity and the resolved force of gravity.

155. Cartesian axes. Let the particle be projected from

a point with an initial velocity V in a direction making an

angle a with the horizon. Let v be the velocity at any point P
of the path; vx ,

vy its horizontal and vertical components.

Consider the horizontal motion. Since the component of gravity

in this direction is zero, the horizontal velocity is constant throughout

the motion and is equal to V cos a. We therefore have

x V cos at, vx = Fcosa (1).

This gives an obvious and useful rule to find the time of describing

any arc of the trajectory, viz. the time of transit is equal to the

horizontal space divided by the horizontal velocity.

Consider next the vertical motion. Since the component of

gravity is g we infer from the formulae of rectilinear motion (Art.

25) that

y= Fsinert-^2
, V= V*sm*OL-2gy (2).
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The (/artesian equation of the path is found by eliminating t

between (1) and (2) ; we have

y = artana-J$KBV7coBs a (3).

This is the well-known equation of a parabola.

To find the greatest altitude of the panicle. We consider only
the descending motion; the particle starts downwards with a

zero vertical velocity and arrives at the level of the original point
of projection with a vertical velocity which, by the theory of

rectilinear motion, is equal to that with which it was projected

upwards. If h is the greatest altitude we have F s sins a = 2gh*

T rind the time of flight. We again consider the vertical

descending motion, disregarding the horizontal motion. If T
tin- time of ascent and descent, we have Vsina = ^gT.

T" find the range on a horizontal plane. We con-Kin the

horizontal motion; the constant horizontal velocity is Vcosa,
and the time of flight has just been found. The range is there-

fare I' sin2a/<7. The range is greatest for a given velocity when

the direction of projection makes an angle of 45 with the horizon,

and continually decreases as the angle increases to a right angle
or decreases to zero.

156. When the motion with regard to an inclined plane

-ing through the point of projection is required, it is useful

to take the axis of x along the line of greatest slope and the

axis "t 'i perpendicular to the inclined plane.

1 1 the direction of projection is not in the plane of xy, let V
and W be the components of the velocity in and perpendicular

to that plane. The motion perpendicular to the plane of y
i- uniform and z = Wt.

Turning our attention to the motion in tin- plane of y, let 7
the alible the duvet ion of tin- velocity V makes with Ox and &

tin- inclination of the plane to the hon/.-n. Tin- initial component
velocities being Fco87 and Tsiny, the formula of rectilinear

ive

l'<-oH 7*-40sin#') v.-(Kco87)*-208in#r)
{

y = r sili y- 40008 0*f vy'-crsii^F-^cos/fyf
'

To find the time of flight T before reaching the plan.

id. T th- perpendicular to the plane. The denoend

moti I'sin y=gcoB/3.T'2 It aU.. |M||,,U. th.it the time
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of describing the arc from to the point where the tangent is

parallel to Ox is T/2. In the same way by considering the motion

parallel to the plane we see that the time from to the point

where the tangent is parallel to Oy is V cos y/g sin ft.

To find the range r on the inclined plane, we use the expression

for x. We easily find r = 2 V- sin 7 cos (7 4- ft) . sec2 ft/g.

157. Oblique axes. Let the direction of motion of the

particle at any point P of the path be PT
and let the velocity be V. The particle

being acted on by gravity in the direction

PN, let Q be its position after a time t.

Consider separately the motion in the

two directions PT and PN. The oblique

components of V in these directions are F
and zero, while those of gravity are zero and

g. We therefore have PT'= Vt, and TQ = ^gt- (5).

Draw QN parallel to TP and let PN=rj, QN= %. The equation

2V'2
of the path is therefore f

a = y (6).
y

This is the equation of a parabola referred to any diameter PN
and its oblique ordinates QN. If 8 be the focus, this equation

must be the same as 2 = 4 . SP .
77.

We deduce the following

useful rule. The velocity at any point P of the path is that due

to the distance ofPfrom either the focus or directrix.

Since the velocity at the highest point of the path is equal to

the horizontal velocity, it follows that one quarter of the latus

rectum, i.e. AS, is equal to F2

cos'-a/2#. See Art. 155.

We have also another formula to find the time of transit

along any arc PQ. Let the vertical at either end, say Q, intersect

the tangent at the other end in T, then the time of describing the arc

PQ is the same as that of describing QTfrom rest under the action

of gravity. It is also the same as that of describing PT with a

uniform velocity equal to that at P.

158. Ex. 1. If three heavy particles be projected simultaneously from the

same point in any directions with any velocities, prove that the plane passing

through them will always remain parallel to itself. [Math. T. 1847.]

If gravity did not act, the plane of the particles would be always parallel to a

fixed plane. When gravity acts each particle is pulled through the same vertical

space in the same time, hence the theorem remains true.
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2. Two tangents PR, QR are drawn to a parabolic trajectory, prove

(1) that the velocities at P and Q are proportional to the lengths of those tangents,

and (2) that the vertical through R divides the arc PQ into two parts which are

ibed in eqnal times.

Draw tjT vertically to intersect the tangent PR in T. Then by the triangle of

velocities, the sides RT, RQ, TQ represent in direction and magnitude the velocity

at P, that at Q, and that added on by gravity during the time of transit. Since

thr diameter through I! bisects the chord PQ, the results given above follow

i'..r. 3. Two balls .1. /; equal in all respects are on the same horizontal line.

ball A is projected towards B with velocity v, while at the same instant B is

let fall. Prove that the balls will impinge and that after impact, the coefficient of

restitution beinR unity, ./ will full vertically and /' will describe a parabola of latus

MI '2r*lg. [Coll. Ex. 1886.]

The balls will impinge because the straight line joining their centres moves

1 to itself. At impact they exchange their horizontal velocities.

l. If r, ;', r" are the velocities at three points P, Q, R of the path of a

projectile, where the inclinations to the horizon are a, a -
/9, a -

2/3, and if f, f
'

be

the times of describing PQ, QR respectively, prove that

v"t= rt\
*
+ ~ = 2 C

f

.

8
ft

- h. T. 1847.)

Resolve along and perpendicular to the middle tangent.

". Three heavy particles P, Q, R are projected at equal intervals of time

from the same point to describe the same parabola. Prove that the locus of the

intersection of the tangents at P, R is & parabola. Prove also (1) that at any
t after the projection of Q, the tangent at Q is parallel to PR, (2) that each of

- is parallel to the straight line joining O to the position of Q at the

It

159. T<> j,roj
t ><'t a

particle from a given point P with a give*

ty V so that it shall pass through another given point Q.

The velocity at P being known tin common directrix HK of

all parabolic paths from P to Q is const met rd

by drawing a horizontal at an altitude V*/2g

With centres P, Q and radii /'//

V/\' we describ. two circles intersecting

nd ,S". Then 8, 8' are the foci of th-

parabolic trajectories which could 1>< <1
-

ibed from P to Q. There ai tore

paraholie path-.

The two foci are at equal distances from th. . -h.-rd /'V, one

on each side. The two directs projection maybe
1 by bisecting the angles HP8 and ///'>". // 7>

v these directions of projection make with the chord PQ, and
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yS the angle PQ makes with the horizon, it easily follows

71 + 72
= *-.

We notice that the three sides of the triangle PSQ are known,
viz. PS=V*/2g, if y be the altitude of Q above P, QS = PS-i, t

and PQ is the known distance of Q from P.

It is clear that when PQ is greater than the sum of the radii

PH, QK, the two trajectories are imaginary. The greatest possible
distance of Q from P in any given direction PQ is found by making
the foci S, S' coincide and lie on PQ. In this case PH+ QK = PQ.

Drawing a horizontal line H'K' above HK so that HH'=PH,
it immediately follows that QK' = QP. The locus of Q is therefore

a parabola whose focus is P and directrix H'K'. This new para-
bola therefore touches HK at its vertex H. It is represented in

the figure by the dotted line. Unless the point Q lie within the

space enclosed by this parabola, it is impossible to project a particle

from P with the given velocity V, so that it shall pass through Q.

If the particle is to be projected from P with the least velocity

which will enable it to reach Q, the direction of projection must
bisect the angle HPQ and F2 = g (r + y), where r is the distance

PQ-

16O. Ex. 1. A particle is projected from a point P with velocity F, so as to

pass through a point Q whose coordinates referred to P as origin are x, y, the axis

of y being vertical. Prove that the directions of projection are given by the

quadratic

tan2 a-- tana+l + -- =,-,
gx gx*

and that the two times of transit are the positive roots of

Prove that the product of the times of transit is independent of the initial

velocity V and is equal to the square of the time occupied by a particle falling from

rest vertically through a distance equal to PQ.

Prove also that the polar equation of the bounding parabola is F2
/<//-=l + cos0,

where the origin is at P and 6 is the angle r makes with the vertical.

See Arts. 154 and 155.

Ex. 2. Prove that every parabolic trajectory meets the bounding parabola in

a point whose abscissa is a; = 2/tcota, and whose depth below the directrix of the

trajectory is /*cot2 a, where h is the height of that directrix above the point of

projection.

If they meet, the curves must touch for otherwise it would be possible to find a

trajectory which would pass through a point beyond the boundary.
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Ex. 3. The point /' being fixed and Q having any position, the tangents at /'. <,'

to one parabolic path from P to Q meet in '/', those to the other in 7", the velocity

at P being given. Prove that the locus of the middle point of TT is the directrix

of either parabola.

Prove also that for either parabolic path, the velocities at /'.<<> are as PTto TQ.
and for the two paths the times of transit from P to Q are as PT to PT.

Ex. 4. A fort of vertical height A- stands on a plane hill-side which makes an

angle a with the horizon. Prove that a gun which can fire with muzzle velocity I'

from the top of the fort commands a district whose shape is an ellipse of

eccentricity sin a, and whose area is ir sec o Fa
(F* sec*a + 2Jrp)/0*.

[Coll. Ex. 1896.)
The paraboloid whose focus is the top of the fort and whose directrix plane is

at an altitude I'-// is the boundary of all places which the shot can reach,

v.i. The paraboloid cuts the plane hill-side in an ellipse whose projection on

ji horizontal plane is a circle. The rest follows easily.

".. At a horizontal distance a from a gun there is a wall of height k which

is greater than a - <i<i-/r- ; prove that if the shot be fired off with a velocity P in a

vertical plane at right angles to that of the wall, there will be a distance on the

i<le of the wall commanded by the gun equal to ,.(**- V - 2fa*u)*,
..; (i- -

//-)

provided this expression is real. [Coll. Ex. 1898.]

ft, A particle is projected with velocity V along a straight frictionless tub

of length /, inclined at an angle a to the horizontal, and after leaving the tube it

describes a parabolic trajectory : prove that its range on the horizontal plane through

V* i I 2af \h
f projection is / cos a + cos a sin a U + ( 1 + T*.

j
I

f when

r
' - = r -

-2
:
il sin a. [Coll. Ex. 1898.]

7. Two smooth planes are at right angles with their edge of intersection

ital and are equally inclined to the horizon. Prove that a perfectly elastic

particle projected horizontally in a direction perpendicular to the common edge

from a point vertically above it will return to its original position after two

rebou (Coll. Ex. 1896.]

". Two parabolas have their axes vertical and vertices downwards and the

focus of each turv, is on the other. A particle, whose coefficient of restitution is

unity, i* projected so as to rebound from the curves at each focus in succession ;

hat it will cond rebound pass through its point of projection and

follow it. original path again. [Coll. Ex. 1897.]

Two particles are projected from the same point at the same

locities r, ,
. ,u,.l i:. im-ctions a, a'. Prove that the time which

between th.-ir r , ,Ugh the other point which is common to both their path*

[Math. T
g P con a f r' cos a'

10. A man travelling round a circle of radius a at speed v throws a bail

from his hand at height h above the ground with a relative velocity Kso that it

alights at the centre of the circle. Prove that the least possible value of F is given

-** + * {V< + *) - *L t00"' Bs I8*-1

be man were stationary, the least value of K is given in Art. 1*9. To tod

lative velocity we add to this (
-

r)
3

.
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161. Ex. 1. A particle is projected from a point A with a velocity I* in a

direction making an angle a with the horizon. After rebounding from a vertical

wall, elasticity e, it hits the ground, elasticity e'. Find

the condition that after the second rebound the particle

may pass through A.

Problems of this kind are solved by considering tin-

motion in two directions separately and equating some

element (usually the time) common to both motions.

Consider first the horizontal motion
;
the blow at C is

vertical and does not affect the horizontal motion, but

the blow at B must be taken account of. Let ON=h,
and let ,, t, be the times of transit along the arc I/.'

and the broken arc BCA. Then h=Vco8at
1 ,

and the horizontal velocity of the

rebound at B being eFcosa, we have also h = eVco&at.,. The whole time is

Consider next the vertical motion, the blow at B may now be neglected while

that at C has to be allowed for. Let f
;J , t4 be the times of transit along A BC and

CA. If k=AN \\eliA\e
- *sF Bin a*,- 10*,*.

One root of this quadratic is negative and the other is positive. The former

indicates the time before leaving A at which the particle might have passed the

level of the ground and is here inadmissible. We take the positive root. If I" be

the vertical velocity of arrival at C taken positively,

Both the values of ?4 thus found are positive, and give the times of transit from

C to A according as the particle passes through A on the up or on the down

journey. Taking both these values we see that the required condition is found by

equating t
l + t^ to either of the values of t.3 + t4 .

Ex. 2. A ball is projected from a point A on the floor of a room, so as to

rebound from the wall (elasticity e) and hit a given point B on the floor. Let the

intersection of the floor and wall be the axis of y and let A be on the axis of x.

If w, v, w be the components of velocity of projection and .r, ?/ the given coordinates

of B, prove that euy = eva + vx, and 2vw=gy.

E.r. 3. A particle is projected from a given point O on an inclined plane in a

direction making an angle 7 with the

plane, the inclination of the plane being

ft. Investigate the condition that the

particle passes through O at the nth

impact.

We consider the motions parallel and

perpendicular to the plane separately.

The motion parallel to the plane is not

affected by the impacts. If T represent

the whole time of transit from O to O

again, we have Vcosy= ^g sin/32'.

The motion perpendicular to the

plane is affected by each impact. The

particle starts with a velocity Fsin7, hits the plane at A
l
with the same normal
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velocity after a time Tj ,
where I' sin y = g cos 07*, . The particle rebounds with a

perpendicular velocity el' sin y and the time of transit from A
l
to A t in found an

before. The whole time of transit is therefore

T, + r2 + Ac.= {2Fsin7/<7 cos ft} (1 + + ... + ).

Equating the two complete times, we have the condition

cot 7 . cot /3
=

(1
-

")/(!
-

e),

which we notice is independent of the velocity of projection.

Let /?!,&,, &c. be the points at which the tangents to the path are parallel to

the inclined plane. The time of transit from O to B, is obviously equal to JT,,
while that from B

l
to B9 is

( Tj + T2), and so on. If C, be the point at which the

tangent is perpendicular to the plane, the time from O to O, is clearly equal to | T.

L A ball whose elasticity is e is projected with a velocity V and rebound*

from an inclined plane which passes through the point of projection. If /?, , JZ., /?,

be any three consecutive ranges on the inclined plane, prove that

R3
-

(e + ) Rt + c*R
t
=0. [Math. T. 1842.]

At two points A. 11 of a parabolic path the directions of motion are at

right angles. If D be the distance Alt, e the inclination to the horizon, V the

y at A or B t prove that V*=gl) (1 sin 0).

'>. A particle is projected from a point on a rough horizontal plane with a

f equal to that which would be acquired in falling freely through a height A,

a D il in a direction making an angle a with the plane. The particle is inelastic and

the coefficients of both the frictions are taken equal to unity, prove that the range
from the point of projection to where the particle comes to rest is equal to

h (1 + sin 2a). [Coll. Ex. 1897.]

The particle describes a parabola with a range 2A sin 2a. On arriving at the

plane, there is an impulsive friction which reduces the horizontal velocity from

c cos a to t>'= rcosa-t?sina. After describing a space ', when r^sSf*', the

is reduced to rest by the finite friction. The whole range is 2* sin 2 + '.

7. A perfectly elastic particle slides down a length / of a smooth Axed

1 plane, and strikes a smooth rigid horizontal plane passing through the foot

of the inclined plane. Prove that the maximum range of the ensuing parabolic

path, as the inclination of the inclined plane is varied, is 81/8^/8. [Coll. Ex. 1896.]

H. A smooth inclined plane of mass A/, inclined to the horizon at an

angle a, is free to move parallel to a vertical plane through the line of greatest

slope. A particle, mass m, is projected from a point in the lowest edge, up U
face of the plane with a velocity I' making an angle ft with the line of greats*

Prove that the range of the particle on the plane if -

[Coll. Ex. 1897.)

'.. Two inclined planes intersect in a horizontal line, their inclinations

to the horizon being a and ft; if a particle be projected at right angles to the

former from a point in it so as to strike the other at right angles, the velocity of

a being the distance of the point of projection from the intersection of the plane*.
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Ex. 10. A heavy particle descends the outside of a circular arc whose plane is

vertical. Prove that when it leaves the circle at some point Q to describe a para-

bola the circle is the circle of curvature at Q of the parabola.

Thence show that the chord of intersection QR of the circle and parabola and

the tangent at Q make equal angles with the vertical. Prove also that the axis of

the parabola divides the chord QR in the ratio 3:1.

The first part follows from Art. 36. Since the pressure is zero at Q, va/p, and

therefore p, must be the same for the circle and the parabola. The rest follows

from conies.

Ex. 11. A particle projected horizontally from the lowest point A of a circle

whose plane is vertical leaves the circle at C and after describing a portion of a

parabola intersects the circle at D. If B is the highest point of the circle prove

that the arc BD is three times the arc BC. [Despeyrous, Court </< M< :

c.]

Ex. 12. A particle is projected so as to enter in the direction of its length a

smooth straight tube of small bore fixed at an angle 45 to the horizon and to pass

out at the other end of the tube; prove that the latera recta of its path before

entering and after leaving the tube differ by ^/2 times the length of the tube.

[Math. Tripos, 1887.]

Ex. 13. A man standing on the edge of a cliff throws a stone with given

velocity u at a given inclination in a plane perpendicular to the edge. After an

interval T he throws from the same spot another stone, with given velocity v at an

angle TT + 6 with the line of discharge of the first stone and in the same plane.

Find T so that the stones may strike each other
;
and prove that the maximum

value of T for different values of 6 is 2v*[gw, and occurs when sin0 = t;/M, w being

y's vertical component. [Math. Tripos, 1886.]

Ex. 14. A particle is projected from the highest point of a sphere of radius c

so as to clear the sphere. Prove that the velocity of projection cannot be less than

[Math. Tripos, 1893.]

Resistance varies as the velocity.

162. To determine the motion of a heavy particle when the

resistance of the medium varies as the velocity.

Let the particle be projected from any point with a velocity

V in a direction inclined at an angle a to the horizon. The

equations of motion are

d*x dx d2

y dy

.'. dx/dt + icx = Vcosa, dyjdt + icy
=

gtf + Fsina.

Both these equations are of the linear form, multiplying by e*
f

and integrating, we find

KX Fcosad
*//
= -

)

- *-))
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=
<7, so that L is the limiting velocity, Art. 111. The

horizontal ;md vertical velocities at any time t are

dx/dt = Fcos ae-*', dy/dt = - Z + ( Fsin a + L) e-< . . .(2).

163. From these equations we deduce the general character-

's of the motion. We
ntice that when t is in-

finite KX = V cos a. There is

efore a vertical asymp-
<>t a horizontal distance

oil = Fcos a/K from the ori-

Let the tangent at

intersect the asymptote in

'/' . then OT =
V/tc and

V= re . OT . Since any point

I* may be taken as the origin, it follows that tfie velocity at any
'

is proportional to the length PT of the tangent at P cut of
/>v the rcrti'-id asymptote.

Tracing the curve backwards we make = oo
;
we then Hn<l

that both .r and y are infinitely great. Since the exponential i-

infinitely greater than t, both yjx and dyjdx have ultimately th<

same ratio. Representing this ratio by tan ft, we have

tan ft
= tan o + Z/Fcos a

:l).

The curve has therefore an infinite branch, the tangent or asymp-
tote to which makes an angle ft with the horizon, determined

ti'.m tin- initial conditions by this equation. Thi>

at an infinite distance from the origin.

164. Eliminating the exponentials tmm the val :m<l

we find

y^xt&nft-U n

a lin.-ar . ipiatiun whieh must hold throughout the mot

Drawing a straight 1m. "/>' parallel to the oblique asymptote,

equation shows that the vertical distance of P from OB w
/

'

/ ; /. /
.

-I'll ere L is the limiting veloa

The perpendicular distance of P from OB being Ltca*0. the

resolved velocity at P perpendicular to the oblique asymptote is

tent The resultant acceleration at Pis therefore parallel to BO.
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165. General principle. Since the resistance varies as the

velocity, the resolved resistance in any direction is proportional
to the resolved velocity in the same direction. The general

principle proved in Art. 154 for motion in a vacuum will therefore

apply to the motion with this law of resistance. The circumstances

of the motion parallel to any fixed straight line are independent <>f

those in any oilier direction.

166. Let the particle be projected from a distant point E on the oblique

branch with such a velocity that it describes the trajectory. Consider the oblique

resolution of the motion in the direction of (1) the tangent or asymptote at E
and (2) the vertical. In the former motion the particle is acted on only by the

resistance, and the acceleration at any time is therefore - KU, where u is the oblique

component of velocity parallel to the asymptote. In the latter motion the particle

starting from rest is acted on by gravity as well as by the resistance and has thus

acquired its limiting velocity L. This component is constant in direction and

magnitude so that the acceleration is zero.

Combining these two motions, we see that in any position P of the particle,

the velocity v along the tangent PT is the resultant of the vertical limiting

velocity L and a velocity u parallel to the oblique asymptote. If U and tt be cor-

responding velocities at any two points O and P of the trajectory, u= Ue~ Kt
, where

t is the time of transit from to P; Art. 102. We also notice that the resultant

acceleration at P is equal to - KU.

Taking a parallel OB to the oblique asymptote and the vertical as axes of

reference we have

*=U(l-e-
Kt

)lK, rj
= Lt

(1),

where %=OB, ij
= BP. If we refer the motion to the tangent at O and the vertical

as axes, we have '=OA, y' = AP. We find by considering the motions in these

directions separately

*r'=r(l -<--*), K r,'
=cjt-L(l-e-

Kt
) (2).

167. Ex. 1. Particles are projected from a given point O at the same instant

with equal velocities in different directions; prove that the locus at any time is a

sphere.

Kefer the motion of any particle to the tangent OA and the vertical as axes of

, 77. Both
, rj are evidently functions of t which are independent of a. The

locus is therefore a sphere whose radius is and whose centre is at a depth T/

below 0. Art. 166.

Ex. 2. Particles are projected from a given point O at the same instant with

different velocities in the same direction OA, prove that at any subsequent time

their locus is a straight line parallel to OA. Art. 165.

Ex. 3. If the axis of x is inclined at an angle i to the horizon and the direc-

tion of projection make an angle y with x, prove that

KX= -gsinit + (V cosy + L Bin i)(l-e~
Kt

))

Ky- -fjfcosi'J-f (F sin 7 +L cos i)(l- g~
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It M be the point at which the tangent is parallel to j . prove that the time
f, of

reaching M and the coordinates of M are

.<
j i
V sin -y + L cos i) -*/,(!' cos -y-. /, sin i)

= L Kt ooe (i + 7) ;

the latur ^nation being also true for all points on the trajectory.

i A projectile moves under gravity in a uniform medium whose nrtJTtamm

M the velocity. Prove that the hodograph of the trajectory is a straight

line and that the velocity of the point on the hodograph is proportional to UM
>ntal velocity of the projectile. [Coll. Ex.]

Resistance varies as the
th

pover <>/ the velocity.

168 Tu rind the mot inn of a heavy pat-tide, when the resistance

the >i
th

power of the velocity.

Let ^ bt the angle the tangent at any point P of the path
niakf< with the horizontal, p the radius of curvatun m.-asiinMl

v.-ly downwards so that p = dsld-^. Let v be the vel

i tin- horizontal component. Following John Bernoulli, 1721, we

I-.-. .Ive the motion normally and horizontally, we thus have

=
</ a s

^r.
.
= lev1

* C 1C

, / c, > ^ = H and p = vdi/d^fr, these become

<lt u ...

d^~~gco**+ <tt

"
"(cos^)

1*-'
"

\\V obtain "iie integral by eliminating tit.

_ K U \
l+l

j_
1 _ *n

j"*
c/^r

r/^

"
r/

' UfJ
'

t* U.*

"

g J. (008 ^r)^
1

a is i he angle tin- initial direction ..f motion mak.

;md MO the initial horizontal velocity.

effect this integration we put p-tan^r. w, th<-n !

-0,

1- J =- .-^l'c/y, .

un u, 5r ;

th. >i^n ,,f the radical when n is even being such th

ot integration is positive between the limits ^ - a and
^fr
- - Jw,

/>
=

y>
and />

= x .
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We can conveniently take either u or p as the independent

variable, anti thus we obtain the two sets of relations,

du \

}(-!'

...(C).

If
Kjun (

The first follows from equation (A), the second and third from

the obvious relations dx udt, dy = updt. The limits in all the

integrals being p =pQ to p or u = u9 to u.

In this manner all the circumstances of the motion can be

expressed in terms of one independent variable which may be

either p or u.

It is evident that the integral (B) has considerable importance
in this theory. Putting

we see that when n = 2 or n = 3,

W2
= ^ \p(l +prf + log (p + (1 +prf)}, Ws

We may also find a general formula of reduction, viz.

When the resistance is a constant force, say icy,
n = 0, and the

integral (B) takes the form

where a is the velocity when the particle is moving horizontally.

169. The equations (C) have been applied to the calculation

of the trajectories of shot in various ways*. When the angle of

elevation is not more than 10 to 15, as in the case of direct fire,

*
Bashforth, Phil. Trans. 1868, Treatise on the motion of projectiles, 1873;

supplement, 1881. Proceedings of R.A. Institution, 1871 and 1885. W. D. Niven,

On the calculation of the trajectories of shot, Proceedings of the Royal Society,

1877. Ingall, Exterior Ballistics, 1885. An account of Siacei's method is given

by Greenhill in the Proc. of the R. A. Institution, vol. xvn. See also Artillery, its

progress and present position by E. W. Lloyd and A. G. Hadcock, 1893. Greenhill,

On the motion of a projectile in a resisting medium, Proceedings of the R. A.

Institution, vols. XL, xn., xiv., 1880 to 1886.
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we may regard the trajectory as so flat that we can reject th

xjiuire of p. Taking u as the independent variable th integration
can then be effected without difficulty. When the path is more
inclined we can divide the whole path into subsidiary arcs for

each of which p may be regarded as approximately constant

though of a different value in each arc. If the arcs were small

enough the initial value of p in each arc might be taken as the

pn per value for that arc. For longer arcs it becomes necessary
to give p a mean value taken over the whole subsidiary arc.

17O. In artillery practice the values of the integrals (C) are commonly inferred

from tables especially constructed for that purpose, different tables being used to

find t, x and y. Opinions differ as to the best methods of constructing and using

these tables. Bashforth represents the law of resistance by *r* where c is a

function of the velocity whose values are deduced from experiment. These value*

for a shot of given cross section and weight and for air of given density Are

tabulated for every few feet of velocity. In effecting the integrations (C) the

quantity * is regarded as constant and in a long arc a value suitable to a mean

velocity over the arc has to be found. This difficulty having been overcome, the

rals (C) are tabulated for different values of * and between certain ranges of

angle.

In the Italian method a quantity allied to the velocity is taken as the indepen-

dent variable. To enable the integrations to be effected the quantity p is taken as

constant throughout the subsidiary arc. The integrals (C) are then determined

r by the use of tables or by giving the index n the value suitable to the range

of velocity in the trajectory.

An account of the methods of constructing and using these various tables

would take us too far from our present subject. We must refer the reader to

special treatises on Artillery.

171. Law of resistance. Many attempt- have been made

to discover tin- law <>t IT >istance to the motion of projectiles.

Passing over the earlier experiments of Robins and Mutton we

may mention as the most important the long-continued series

made by F. Bashforth with thi help of his chronograph. By this

th.- tinirs tak.-n by the same projectile in pan-

over a succession of equal spaces can be measured with great

accuracy. Other exp -riim -nts have also been made on the con-

tinent, for example by Mayevski in l
ss l It appears from all

se experiments that the resistance cannot be expressed by

any one power of the The general result is that

l.w and high velocities the resistance varies as the square of the

i<l for intervening velocities as the cube and eren a

higher power of the velocity.

R. D.
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To be more particular, let v be the velocity measured in feet

per second, d the diameter of the ogival headed shot in inches,

w the weight in pounds. Then taking the resistance to be

d~
$
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Eliminating u between (2) and (5) we find

^^+W(l +P) + log{p + V(l + l>)} = C (6).

This is the intrinsic equation of the path.

173. To discuss the form of the curve it will be convenient to place the origin
at the highest point so that initially p = 0. We then have

t(l-<
2
**) = pJ(l+P*) + log{p + J(l + rt\ ..

(7)."0
When s increases to positive infinity we see from (2) and (7) that u tends to

zero and p to minus infinity. Since by (3) or (C)

gdt= -ndp and gdx= gudt= -u*dp,

it follows that both dtjdp and dxjdp are ultimately zero. We shall prove that

while t becomes ultimately infinite, x tends to a finite limit. We therefore infer

that the curve hat a vertical asymptote at a finite distance on the positive tide of the

highest point.

To prove this we refer to (5) and retaining only the highest powers of p, we tee

that 11 u'" is of the order />
2

. Putting u = bjp when p is very great, we find

fit
- -

judp= - b log p, gx-- fu*dp= 6*/p.

Taking these between the limits p = p l
to infinity where />, is any Urge finite

quantity, the first gives the time the particle takes to travel from the position

defined by p=p l
to that defined by p= - oo , and the second gives the corresponding

horizontal space. We see that the first is infinite and the second finite.

174. Consider next the other extremity of the trajectory. When the arc is

negatively very great, we see by (2) that u is positive and infinite. It also follows

by (7) that p tends to a limit m given by the equation

Since the left-hand side passes from a negative quantity to positive infinity M m
varies from zero to infinity, it is clear that this equation has at least one positive

root. If the equation could have two real roots, the differential coefficient of the

left-hand side would vanish for some intervening value of m. Bat since the

differential coefficient is 2^(1 + m*) this is impossible. It follows that the curt* on

the negative tide of the highest point hat an asymptote inclined of a finite angle f

the horizon. We shall now prove that this asymptote it at a finite distance from the

Af point.

To prove this we examine the limiting value of the intercept of the tangent oo

the axis of y, viz. y-xp, when p= m. Remembering that gdx- -nty, dymfdm,

we have g (y
-
xp) = -

jpvMp +p/
s
rfj>,

the limits being p=0 to p. As we only wish to determine whether the limit is

finite or not we shall integrate from p = m-t l
to p = m. where {, is some finite

y as small as we please. The remaining part* of the integrals will be

included in two finite constants M and N. Writing p = m-{, we have

.its being =
,
to 0. To find what function u is of f when { is small, we

refer to equation (5). Remembering that B !/*,' sine* , when s>-o. w

72
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write that equation in the form

Expanding and remembering that rf//rfp
= 2

/v/(l +pz
) we find after subtracting (8)

*i,
=
j*/(l

+ m*)t + 4?+...,
'

tt=P/$ + J' + B'$ + ... f

where fc
2
,
A' and B' are finite constants. Substituting we find by an easy integration

where the &c. includes only positive powers of . Taking this between the limits

=& to 0, the result is finite.

175. Ex. 1. Prove that, when the resistance varies as the square of the

velocity, the time of describing the infinite arc on the negative side of the highest

point is finite.

Referring to equations (C) and writing jp
= -, M2

=6*/ we see that the time

of describing the infinite arc from p=m to p=p^ is M*J(m-p} ),
where M is a

finite quantity independent of or p. This result is finite
;
see also Art. 116.

Ex. 2. When the resistance varies as the square of the velocity, prove that

the polar equation of the hodograph is cos2 6 I + y^
sinh" 1 tan 6 \ + ^^ ,

where the origin is at the highest point, V is the horizontal velocity, U the

terminal velocity and the initial line is horizontal and 6 is measured positively

downwards. [Coll. Ex. 1893.]

This is a transformation of equation (5) of Art. 172, writing r,
-

0, for v, \[>.

Ex. 3. When the resistance varies as the square of the velocity, prove that

the radius of curvature p at the point where the normal makes an angle with the

vertical is given by

2/Kp = c sin3 + 2 sin3 log cot
<f> + sin 20. [Coll. Ex.]

176. Ex. 1. When the resistance varies as the nth power of the velocity,

prove that the curve has a vertical asymptote at a finite distance on the positive

side of the highest point.

We have v = u>J(I+p*) where u is given by equation (B). Now, by the action of

gravity, p continually decreases from one end of the trajectory to the other. After

the projectile has passed the summit p becomes negatively great and (B) then gives

u= L/p, where L is the limiting velocity. We thus have v =L when p= cc . Sub-

stituting u = Ljp in (C) and integrating from p=pl
to oo

, where p^_ is any large

finite quantity, we find that t and y are infinite and x finite.

Ex. 2. Prove that, when the resistance varies as the nth power of the velocity,

n being >2, the arc of the trajectory on the negative side of the highest point

begins at a point at a finite distance from the origin. Prove also that the tangent

at this point makes an angle tan" 1 m with the horizon given by

where u and p are any contemporaneous values of u and p. See Art. 116. As in

Art. 174, this equation has one positive root.
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In the extreme initial position of the particle the velocity is infinite. Since

v = u v/(l -f //-')
we must there have either u or p infinite. If p = oo , (B) gives = Lip

and this makes r finite. The equation giving m is therefore obtained by putting
u = oo in (B). To determine the position of the particle when this occurs we express
u in terms of p and use the equations (C). Let the initial position defined by

P=p be such that }>v
= m-$ l

where
,

is a finite quantity as small as we please.

Substituting p = m-$ in (B) and using the equation given above to find m, we
have u n = b*jt where & is a constant. Substituting in (C) and integrating from
=

i
to we find that f, x, and y are finite when = 0.

3. When the law of resistance is the nth power of the velocity, and u, M'

are the horizontal velocities at any two points of the trajectory at which the112
tangents make equal angles with the horizon, then + -^ = where a is the

velocity at the highest point.

. 4. When the resistance is K' + KC*, investigate the linear equation

dur* K'n u- KH

-dp-
+

~9

where u is the horizontal velocity and p is the tangent of the inclination to the

horizon. Thence show that the determination of t t x, y may be reduced to inte-

gration. [Allegret, Bulletin de la SocifU Math. 1872.]

When the resistance is constant and equal to xg, the highest point

being the origin and the velocity being a, prove that the horizontal velocity M at

any point of the path is u = a(tan0)" where 20=^ + 4*. Thence deduce from the

integrals (C), Art. 168, the values of f, x, y in terms of tan 6.

If /c < or =1, the subsequent path has a vertical asymptote which is at the

finite distance x = 2*a*/0 (4/c
2 -

1) if *> i, but is at an infinite distance if < |. If

r> 1 the particle arrives at a point C at which the tangent is vertical in the finite

time icafg (K-
-

1), the coordinates of C being 2a'/0 (4x*
-

1) and
-
a'/4? (K*

-
1).

On the negative side of the origin, the curve begins with a vertical asymptote

which is infinitely distant and the time of describing the arc is infinite.

177. When the resistance varies as the cube of the Telocity, the equation (B)

of Art. 168 takes the form

the origin being taken at the point at which the velocity is infinite and m being the

corresponding value of p.

To discuss the motion we substitute this value of ti in the integral* (C). For

the redaction of these integrals to elliptic forms we refer the reader to a paper by

Oreenhill in the Proceeding* of the Royal Artillery Institution, vol. xiv. 1866.

Show that for the cubic law of resistance the Telocity is a minimum at

the point given by the negative root of the quadratic p*-*(st* + 8)p
also that when the direction of motion is perpendicular to the oblique

the horizontal velocity M is given by ^
= + i "here L is the limiting Telocity.
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178. Some formulae have also been given by the late Prof. Adams to determine

the coordinates of a particle projected at any inclination to the horizon on the

supposition that the resistance varies as the nth power of the velocity and that the

path is not very curved. These were first published in the Proceedings of the

Royal Society and proofs were. given in Nature, vol. XLI., 1890. These appear to

be long, but they admit of great abbreviation.

179. The equation of a trajectory being given in the form coB\J/=f(pcoB\f/),

it is required to find the law of resistance.

We notice that the equation can be written in this form, except when p cos
\f/

is

constant, for in that case p cos ^ cannot be taken as the independent variable.

This excepted curve is the catenary of equal strength.

Resolving horizontally and tangentially, we have

(1).

Eliminating dt RCOB\!/= (v cos $) (R + g sin ^) ;

/. Rv -T- (cos \f/)
= -g8in\f/ (VCOB\{/) ..................... (1).

Remembering that the normal resolution gives v2
lp=gcoe ^, we have cos ^=/ (v-jg).

Substituting this value of cos^, the expression for the resistance R has been

found. We may also write the expression in the form

where f=f(v*lg) and the sign of the radical follows that of sin ^.

18O. Ex. 1. Find the law of resistance v/hen the trajectory is a cycloid with

the cusps pointing downwards.

In this curve p=2acos^, .'. f=vl>J2ag. We then find that the resistance

R= - 20 (1
-
v*l2ag)^. Since the radical follows the sign of sin

\f/,
R accelerates the

particle on the ascending and retards it on the descending branch. Since

v= cos
i/> N/2a</ the particle comes to rest at the cusp. The resistance R is then

acting upwards and is equal to 2g, the particle then moves vertically. See Art. 176,

Ex. 5.

Ex. 2. Find the law of resistance when the trajectory is the catenary of equal

strength with the concavity downwards.

The normal and tangential resolutions show that v is constant and R = - g sin
\f/.

R is a resistance therefore only on the descending branch.

Ex. 3. Find the law of resistance in the parabola pcoB
s
\f/=2a.

Ex. 4. Find the law of resistance in the circle p = a. The resistance is

and v



CHAPTER IV.

CONSTRAINED MOTION IN T\Vo IU M ENSIGNS.

Constrained Motion.

181. A particle, constrained to describe a given smooth fixed
is under the action ofgiven forces. It is required to find the

velocity and the reaction between the curve and the particle.

Let the curve be referred to fixed Cartesian coordinates and

let its equation be y =/(#). Let (x, y)

be the position of the particle P at the

tii 1 1<- t. in its mass, Xt
Y the resolved

forces. Let the tangent at P make an

angle >|r
with the axis of x, and let p be

the radius of curvature. Let R be the

pressure of the curve on the particle

tak-n positively in the direction in which

measured
;
this direction is generally

rds.

When the path of the particle is known the relations between

p. tli.'- arc s and the other lines of the curve are also knowi

refore generally more convenient to choose the tangent
in*) normal as the directions in which to resolve the aoceler

Resolving in these directions, we have

o

y
-T

dv

ds

i/ir--

P
* + + R (*).

From these two equations we may deduce all the circumstances of

motion.
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Considering the tangential resolution we see that since

cos
yfr
= dx/ds, sin ty dy/ds,

mvdv = Xdx + Ydy ..(3).

There are two cases to be considered according as the right-hand
side of this equation is or is not a perfect differential of some
function of x and y.

In the former case the forces are called conservative. Let

Xdx+Ydy = dU (4).

We therefore have by integration

%mv- = U+C (o).

Let (# , y ) be the coordinates of the initial position A of the

particle, and let U become U when we write for x, y, their initial

values. We therefore have

^mv
n

--^mv
z=U-U (6).

This equation is one case of a general principle usually called

the Principle of Vis Viva.

The dynamical peculiarity of this case is that the equation of

the tangential resolution can be integrated without using the

equation of the constraining curve. It follows that if the particle

is projected from a given point A with a given velocity and if it is

conducted to another point P by constraining it to move along an

arbitrary curve, then, whatever the path may be, the velocity of the

particle on arrival at P is ahuays the same.

182. When the forces are such that Xdx + Ydy is not a

perfect differential of any function of x and y the velocity cannot

be found without using the equation of the constraining curve.

Putting y=f(x), we find

^2

=/{^r-f Yf'(x)}dx + C.

Since X and F can be expressed as functions of x by the help
of the equation of the curve, the integration can be effected. Let

the integral be F(x). We then have

fynv*
-

$mv<? = F(x) - F(xQ).

In this case the change of vis viva does not conserve the same
value for all paths.
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183. Let us next take into consideration the equation of the

normal resolution, vix.

=-Xsi

The term mv*/p is called the centrifugal force of the particle*.

This is another name for the normal component of the effective

force, Arts. 36, 68.

The force R is called the dynamical pressure of the curve

on the particle, and R is the dynamical pressure of the particle

un the curve. The two terms X sin
-ty + F cos i|r

make up
the resolved part of the acting forces along the normal to the

curve and are together called the statical pressure of the forces

on the particle. Taken with the opposite signs they are th

statical pressure on the curve.

184. We are now in a position to apply the two fundamental

rems to determine the motion of a particle on any given fixed

curve.

'. we use the equation of vis viva. vix.

change of kinetic energy = work of the forces.

In this way we find the velocity.

Secoinllf/. the dynamical pressure on the particle in any

position is given by the equation

mv* _ /normal \ /dvnamicalN

p
~
\force inwards/ \ pressure /

'

185. Work Function. The usual methods of finding the

work of a system of forces are explained in lo,>k> >n Statics. As

however the solution of our dynamical problems depends so much

on our knowledge of these rules, it has been thought not ini

proper to recall to mind those few which we shall here use. A
cniiiplete list applicable to a system of rigid bodies is to

be fou ml in the author's Rigid Dynamics.

is perhaps unnecessary to observe that the centrifugal force is not an

actual force acting on the particle in addition to the impressed forces. It is

merely a name for the quantity nir'/p, and measures the amount of force which

muftt act towards the concave side of the path to produce the curvature !//>; the

mass of the particle being m and the velocity r. By the first law of motion the

particle tends to move in a straight line and the force necessary to curve the path
is sometimes $aid to be spent in overcoming the centrifugal force.
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If X, Y are the components of a force F the work done when
the particle receives a slight displacement ds from the position

x, y to x + dx, y -f dy may be written in either of the equivalent
forms

Xdx + Ydy = .Pcos (j>ds .................. (1),

where
<f>

is the angle the direction ofF makes with the tangent to

the path, see Art. 70. That the work of the two forces X, Y is

equal to that of their resultant is proved in Statics. It is also

seen to be true by resolving the forces along the tangent; we
then have

X^+Y^ = FcOS
<t>,ds ds

which is equivalent to the equation (1). Either side of (1) is also

called in Statics the virtual moment of the force F.

The integral U when used in the indefinite form

is called sometimes the force function and sometimes the ivork

function. The definite integral UU is the work done by the

force F as the particle moves from the position (a? , y ) to the

position (x, y). Here U represents the same function of #
, y

that U is of x, y.

186. Work of a central force. Let the central force F
be regarded as repulsive in the standard case. Let it tend from

the centre S and be equal to f(r) where r is the distance of the

particle from S. Then since dr/ds is the cosine of the angle
the distance r makes with the displacement ds of the particle,

the part of the work function due to F is fFdr. The integration

is to be taken from the initial position A to the final position B of

the particle.

When the force under consideration is gravity the centre 8 is

regarded as being infinitely distant. We then replace dr by dy,

the upper or lower sign being taken according as y is measured

downwards or upwards. Supposing the weight of the particle

to be mg and that y is measured downwards, the work of the

weight is

This rule is usually read thus, the work done by gravity is the

iveight multiplied by the vertical space descended. It should be
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noticed that the work is independent of the horizontal displace-

ment. See Art. 70.

187. Work of an elastic string. The case in which the

particle is attached to a fixed point S by an elastic string dit

from that of a central force tending to the same point in a certain

discontinuity. If I be the unstretched length, r the actual length
and E Young's modulus, the tension T is given by Hooke's law

T = E 7 when the string is tight, i.e. when r > I, but the tension

is zero when the string is slack, i.e. ? < I.

Let the work be required when the string is stretched from a

length h to L> and let 2
1

,, T* be the tensions at these lengths. If

both , and /2 are greater than /, the work is

/:<-

2 V

work done by the tension is therefore equal to minus the

'hinetic mean of the tensions multiplied by the extension. The

work done by the force which stretches the string in opposition to

tension is the same taken with the positive sign.

This rule is of considerable use when the length of the string

undergoes many changes during the motion, being sometimes

greater than the unstretched length and sometimes less. It is

important to notice that the rule, as given above, holds in all

these cases provided the string is tight in the initial and final

states. If the string is slack in either terminal state, we may
Mill use the same rule provided we suppose the string to h

its natural or unstretched length in that terminal state.

188. The equation of vis virn 'so when the particle is

fret / is acted on by any conservative system of

forces. For, whatever curve the particle may describe, we may
}X)se it to be constraint <1, like a bead on an imaginary u

to describe that path. The pressure i- then /.TO throughout the

i MII. but, what more immediately concerns us here, is that

u (6) of vis viva continues to hold under these

oiroai
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189. The whole area or space taken into consideration when
the forces are expressed in terms of the coordinates is called

the field of force. Such a field is usually defined by expressing
the force function (when there is one) as a function of the co-

ordinates.

It follows from the principle of vis viva that when a single

particle moves in a field defined by a force function the kinetic

energy of the particle in any and every position differs from the

value of the force function at that point by a constant. The

constant is independent of the direction of motion, so that two

particles of equal mass projected from the same point with equal

velocities but in different directions will always have equal velocities

whenever they pass over a given point of the field.

19O. Examples. Ex. 1. A particle is projected from a given point on a

smooth curve and is acted on by no forces. Prove (1) that the velocity is constant

and (2) that the pressure varies as the curvature.

Ex. 2. A heavy particle P describes a curve and in any position a normal PQ
is drawn outwards, so that PQ is equal to half the radius of curvature at P.

Prove that the velocity v and the pressure R on the particle measured inwards are

given by
v 2

=2gz, Rp= 2vigz',

where 2, z' are the depths of P and Q below a certain horizontal straight line,

which may be called the level of no velocity. Prove also that the particle leaves

the curve when Q crosses the level of no velocity.

Supposing that the axis of y in the standard figure of Art. 181 is drawn

upwards, the two fundamental equations for a heavy particle are

mv2 -
\ rov 2=-mg(y- y ) ,

mv^jp= - mg cos $ + R.

If we draw a horizontal straight line at an altitude ylt such that gyi=
we see that

The results to be proved follow immediately. If the particle is constrained to

remain on the curve merely by the pressure R it will leave the curve when R
changes sign. But this is what happens when Q crosses the level of no velocity.

Ex. 3. A particle is swung round a fixed point at the end of a string in a

vertical plane. Prove that the sum of the tensions of the string when the particle

is at opposite ends of a diameter is the same for all diameters.

[Coll. Exam. 1896.]

Ex. 4. A heavy particle, constrained to describe an ellipse whose plane is

vertical and major axis inclined at an angle a to the horizon, is projected from the

upper extremity A of the major axis with a velocity v . Find the velocity v

with which it passes the upper extremity E of the minor axis and the pressure

at that point.
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Since the altitude of B above A is the difference between the projections of CA
and CB on the vertical, the equation of

vis viva gives

\ m (tJj
2 - r s

)
= - mg (b cos a - a sin a).

This gives two equal values of v
l
with

opposite signs. One or the other is to be

taken according as the particle is pro-

jected from A upwards or downwards.

If the values of
i-,

are imaginary the

particle will not reach /'.

The pressure jR
x
at B is found by re-

solving the forces along BC inwards. We have

mi-,-
1 = m<7 cos a + .??!,

where pi=a'
J
/6.

Let us suppose that in addition to its weight the particle is acted on by a centre

of force at the focus S such that the attraction at a distance r is pr*. The equa-

tion of vis viva would then have on the right-hand side the additional term

-
J/xr*dr, the limits being the initial and the final values of r, i.e. r=a (1 + e) and

r = rt, Art. 186. The velocity r, is then given by
a1*"*"1

$ro (,- r 2
)= - mg(bcoaa - a sin a)

-
fi ^-^ {1

-
(l + <r)"

+1
}

and the pressure is determined by

wt\ 2 6
1 = nig cos a + fia* .

- + R, .

Pi a

Let us next attach the particle to the centre C by an elastic string whose

natural length is I. The effect of this is to add another term to each equation.

If l<b and <a the string is stretched throughout and the term to be added to the

equation of vis viva is -
} (7' + 7',) (b-a) where T and

r

l\ are the tensions at A

and 7?, see Art. 187. In our case T = E(a-l)ll and r, = (&-!)/*. If however

l>b and <a the string becomes slack at some position of the particle between

A and //
; the term to be added is now - (T + 2\) (I

-
a) where T

l
= and T has

the same value as before. Lastly if / > 6 and > a the string is slack throughout

and no term is to be added.

The equation of pressure will also have an additional term on the right-hand

side. This term is 2',, where 7', has the same value as in the equation of vis viva,

In this way the velocity of the particle and the pressure at any point may be

found with ease no matter how complicated the forces may be.

">. A small ring without weight can slide freely on a smooth wire bent

the form of an ellipse. An elastic string whose natural length is I also panel

tig and has one end attached to the focus S and the other to the

centre C. The ring being projected from the extremity A of the major axis, prove
that the velocity r, , and the pressure 7f, at the extremity B of the minor axis are

given by
* (v,

f - v )
=

( r, + ro) (a + ae -
6),

(a + 6 -/)// provided the string b stretched at the

beginning and end of the transit.
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Ex. 6. A heavy bead is initially at the extremity of the horizontal diameter of

a uniform heavy smooth circular wire whose plane is vertical. The system falls

from rest through a space equal to the radius. The circular wire is then suddenly
fixed in space. Find the subsequent motion of the bead, and determine if it ever

comes finally to rest. Find also the pressure on the wire for any possible position

of the particle.

Ex. 7. A particle, constrained to describe a circular wire, is acted on by a

central force tending to a point on the circumference and varying inversely as the

fifth power of the distance, prove that the pressure is constant.

Ex. 8. A particle is constrained to describe an equiangular spiral and is acted

on by a central force tending to the pole whose acceleration is ^r
n

. The particle

being projected with a velocity v at a distance a from the pole, prove that the

velocity and pressure are given by

-R / 2u ,,\ sin a n + 3- =
( v ft

2 + -2-3- an+1 I r u?-
n sinm \ w + 1 ) r ;/ + l^

If 71= -3 and v = v//t/a, the pressure R 0. The spiral is therefore a free

path when the force varies as the inverse cube of the distance, and since any point

may be regarded as the point of projection, the velocity at every point is given by

Ex. 9. A particle is constrained to move in an ellipse along which it is pro-

jected, and the straight line joining the foci attracts according to the Newtonian

law. Prove that the resultant attraction varies inversely as the normal and that

the velocity is constant.

Ex. 10. A particle of unit mass moves in a smooth circular tube of radius a,

under the action of a centre of force which repels as the inverse square of the

distance. If the centre of force be midway between the centre of the circle and

the circumference, and the particle be projected from the end of the diameter

through the centre of force remote from that point, with a velocity whose square is

4/x (tJB
-

l)/3a, the particle will oscillate through an arc 2?ra/3 on either side of the

point of projection. [Coll. Ex. 1897.]

Ex. 11. A particle is constrained to describe a lemniscate and is under the

action of two central forces tending to the foci and varying inversely as the cube

of the distance. Supposing the forces to be equal at equal distances from the foci,

prove that the pressure at any point P varies as the distance of P from the centre

of the curve.

Ex. 12. A particle slides down a smooth curve in a vertical plane. If the

pressure on the curve is always X times the weight of the particle, prove that the

differential equation to the curve is y + c= a (dxjds
-

\)
2

. [Math. Tripos, 1863.]

191. Rough Curve. When the particle slides on a rough
curve the friction acts opposite to the direction of motion and its

magnitude is p times the normal pressure taken positively. The
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equations of motion are by Art. 181

inv -T- = *

mv* v -
, i- , T>= X sin y + 1 cos ^ R.

It is important to determine the signs of the terms containing
R before proceeding with the solution. The initial value of the

velocity being known the second equation determines the initial

direction of R. Taking R to act positively in the direction thus

t will continue to be positive during the subsequent
motion until it vanishes. The initial direction of the velocity

being known, the friction pR must be made to act in the first

equation opposite to that direction. If the particle start from
rest the friction fiR must be made to act opposite to the direction

of the tangential force. The sign of p will then continue un-

changed until either the pressure R or the velocity v vanishes and

becomes reversed in direction.

To solve the equations of motion we in general eliminate R.

uembering that when s and ty increase together p^ds/difr, we
obtain an equation of the form

By using the geometrical properties of the curve we express P in

terms of
>|r.

The equation being linear, we then have

value of v being found, the value of R follows from either of

tli- equations of motion.

192. Examples. /., . 1. A particle is projected with a velocity I* along a

rough horizontal circle in a medium whose resistance varies as the square of the

velocity. Prove that

i
-;.=,*.

,=,-,-*

where v is the velocity after a time f ,
t the arc described, and ft is a constant.

2. A small bead of unit mass is constrained to move along a rough wire,

bent into the form of an equiangular spiral of angle a, in a medium whose

resistance is r* cos a/c and is under the action of no other forces. If the coefficient

of friction is cot a, prove that the time of travelling from a distance c to a distance

MI thcpole i8'(6-c)/roosa wherect'= 6-c, and V is the velocity at the first

of these points and is directed from the pole.
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Ex. 3. A heavy particle moves on a rough cycloid placed with its convexity

upwards and vertex uppermost. The particle is started with an indefinitely small

velocity at the point at which the tangent makes with the horizon an angle e equal

to the angle of limiting friction. Prove that the velocity at a point at which the

tangent makes an angle <j>
with the horizon is 2 *Jag sin (0

-
e) and that the particle

will leave the curve at the point at which the velocity is tjlag (cos \ e - sin e).

[Coll. Ex. 1889.]

Ex. 4. A particle is projected horizontally with velocity V along the inside of a

rough vertical circle from the lowest point, prove that if it complete the circuit it

will return to the lowest point with a velocity v given by

1
). [Coll. Ex. 1887.]

193. Condition that a constrained motion is also free.

It has already been pointed out that the required condition is

that the pressure R must be zero throughout the motion, see

Art. 190, Ex. 8. In this way we easily obtain several useful cases

of free motion.

If T and N be the tangential and normal components of the accelerating force

estimated positively in the directions in which the arc s and the radius of curvature

p are measured, we may prove that the condition R= Q leads to the result

2T= (pN). This is obtained by eliminating v'
2 between the normal and tangential

resolutions in Art. 181 and differentiating the result. This form of the criterion

though necessarily true is not sufficient to make E= 0. As no notice is taken in

it of the initial velocity, it is generally less convenient than the simple rule

that E = 0.

194. Examples. Ex. 1. A particle is constrained to describe a smooth

circle under the action of two centres of force

tending to fixed points S, S' on the same

diameter, the accelerating forces being /A/r
5

and At'/r
'5 where r, r' are the distances of the

particle from the centres of force. If S and

S' are inverse points, prove that the pressure

can be made zero by giving ///* and the

velocity of projection suitable values.

Let a be the radius ; 6, b' the distances of S, S' from the centre C. Since the

points are inverse W=a?. If P be the particle the triangles SPC, S'PC are

similar and ?-'/r=a/6. The fundamental resolutions give

= cos SPC + cos S'PC+ .

From these we easily obtain
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In order that R= we have two conditions

(1) _(), m *- + .

Since //r=a/6, the first condition shows that the tangential accelerations due
to the two forces are equal at all points of the circle. Since any point may be

regarded as the point of projection the second condition gives the velocity at all

points of the orbit. Since r is zero at an infinite distance, this formula shows
that the velocity at any point of the orbit is the same as if the particle were con-

ducted from rest at an infinite distance to that point ; Art. 181.

If the two centres of force are indefinitely near to each other the resultant

attraction at any point P at a finite distance from them is the same as that of a

single centre of force of double the intensity of either. Hence we arrive at Newton's

theorem that a circle can be described freely under a single centre of force whose

acceleration varies as the inverse fifth power, the centre of force being on the cir-

cumference.

When the particle comes indefinitely close to the two centres of force, they
cannot be considered as one centre. The particle passes between the two centres

with an infinite velocity. The two centres of force attract the particle in opposite

directions with forces /u/(a-6)
5 and /*'/(&'

~ a
)
8 both being infinite. The resultant

force tending to the centre of the circle is therefore /u/a (a
-

fe)
4 which is also

infinite. This last force gives the initial curvature to the subsequent path.

Ex. 2. A particle describes a catenary under the action of a force parallel to

the ordinate. Show that if the pressure is zero, both the force and the velocity

vary as the ordinate.

.'$. Show that a particle can describe a parabola under a repulsive force in

the focus varying as the distance and another force parallel to the axis always
three times the magnitude of the former. Prove also that if two equal particles

describe the same parabola under the action of these forces, their directions of

motion will always intersect on a fixed confocal parabola. [Coll. Ex.]

1. If a curve be described under the action of a force P tending to the

pole and a normal force Ar

, prove that

- tHath.THpo.0

195. Does the particle leave the curve ? If the particle

is a small ring which slides on the curve it is obvious that it

cannot separate from the curve. In this case the pressure R may
have any sign.

If the particle slide on one side of the curve the pressure on

tin- particle must tend towards that side on which the particle

moves. The pressure R must therefore have the sign which

-nits thi- Hinction and must k.
].

that sign throughout the

motion. \V- refore the analytical expression for R gi

l.y
tli.- normal n-solutioi, (Art. 1*4) changes sign the part;

separates from the curve.
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Since the forces in nature cannot be infinite the points at which

R can change sign are found by putting R = Q in the normal

resolution. Let mf be the resultant force, and let its direction

make an angle < with the normal. Then

mv- ~ n=
mfcos<t> + R.

The possible points of separation are therefore given by

V* =fp COS
<f>.

Now 2/3 cos <> is the chord of curvature in the direction of the

force mf. Representing one-fourth of this chord by c, the

equation becomes i;
2 =

2/c. Hence the particle can leave the curve

only at a point such that the velocity is that due to one-fourth the

chord of curvature in the direction of the resultant force. Art. 25.

196. Examples. Ex. 1. A heavy particle is suspended from a fixed point C

by a string of length a. A horizontal velocity v is suddenly communicated to the

particle so that it begins to describe a vertical circle. It is required to determine

whether the particle will oscillate or the string become slack.

The equation of vis viva shows that the velocity v at an altitude y above the

lowest point of the circle is given by

v*= v *-2gy ....................................... (1).

The tension R is given by

(2).

If the particle oscillate the velocity is zero at the extremities of the arc of

oscillation. It follows from (1) that the altitude of this point above the lowest

point is v 2
/2<jr.

If the string becomes slack the tension vanishes at the point

of separation. It follows from (2) that this occurs at an altitude (V + a3r)/% above

the lowest point. These points cannot be real points unless their altitudes are less

than the diameter.

We also notice that the altitude of the first of these points is greater or less

than that of the second according as t?
3 is greater or less than 2ag.

If V(?>5ag neither point is real. The particle must describe the whole circle

and the string does not become slack.

If r 2
<2a<7 the velocity vanishes at an altitude less than that at which the

tension vanishes. The particle therefore oscillates and the string does not become

slack.

If v 2 <5a# but >2ag the string becomes slack before the velocity vanishes.

The particle therefore leaves the circle and describes a parabola freely in space.

If the particle, instead of being suspended by a string, were constrained to

move like a bead on a vertical smooth circle of radius a the particle could not

separate from the circle. It therefore oscillates or describes the whole circle

according as v 2 < or > lag.
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Ex. 2. A bead can slide on a horizontal circle of radius a and is acted on only

by the tension of an elastic string, the natural length of which is a, fixed to a point
in the plane of the circle at a distance 2a from its centre; find the condition that

the bead may just go round. Prove that in this case the pressures at the

extremities of the diameter through the fixed point will be twice and four times the

weight of the bead if that weight be such as to stretch the string to double its

natural length. [Math. Tripos, I860.]

'. A heavy particle is allowed to slide down a smooth vertical circle of

radius 27a from rest at the highest point. Show that on leaving the circle it moves
in a parabola whose latus rectum is 16a. [Coll. Ex. 1895.]

Ex. 4. A particle moves on the outside of a smooth elliptic cylinder whose

axis is horizontal. The major axis of the principal elliptic section is vertical and

the eccentricity of the section is e. If the particle start from rest on the highest

generator, and move in a vertical plane, it will leave the cylinder at a point whose

eccentric angle is 0, where e' cos8 = 3 cos
<f>
- 2. [Coll. Ex.

A particle is projected horizontally from the lowest point of a smooth

elliptic arc, whose major axis 2a is vertical and moves under gravity along the

concave side. Prove that it will quit the curve at some point if the velocity of

projection V is such that V- lies between 2ga and ga (5-e2
), where e is the eccen-

tricity; and if the velocity have the latter value, prove that the particle will

continue to move round the ellipse in the periodic time

'.. A particle, projected inside a smooth circular tube, moves under an

attractive force varying inversely as the square of the distance from a point within

the rim of the tube and in its plane. Prove that the pressure cannot vanish at any

point if the particle is performing complete revolutions. [Coll. Ex. 1897.]

197. Moving curves of constraint. To find the equations
<t motion of a particle constrained to slide on a curve moving in

"\vn plane.

Let be any point of the plane of the curve which it will In-

convenient to take as origin. Let f be the acceleration of ;

it, then the motion relative to will be unchanged it' w,-

apply to every point of the curve and to the particle an accelera-

ti"M <

ijual an<i opposite to that of 0. If we also apply to every

point an initial velocity equal and opposite to that of 0, we
v regard as a fixed point. / nt is then said to have

been reduced to rest.

\\ ill IP.W take as the origin of the pola I iatesr,0,

where Q is measured frnm . ^ruiu'ht lin<- Of ti

urve. Let o> be the angular velocity of of referred to a

iL,'ht line Ox fixed in space. Let be the angle the radius

82
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vector r makes with the tangent. The equations of motion are

dV (d6 \-P.R.
j- r(j- + ft> =--/I

-- sm
dt- \dt J m Jl m
Id n (dO \ Q f R
-^l* IT + * I

= - -/ +
r dt \dt J m m

where P, Q are the components of the impressed forces,

those of/
These equations may be written in the forms

d*r fd0\* P. (R \ .

j^- r hji = --
/i + <r- -- 26>v smd>,

dt- \dt] m \m
Id f n d0\ Q , dm ^(R \
-

3i 7 -ji
= ~> "

-31 r *(" ~ 2ft)V cos
r rf V c^</ m dt \m J

since rd6/dt = v sin 0, dr/dt = v cos 0.

These are the equations of motion we would have obtained if

we had supposed the curve to be fixed in space and the particle to

be acted on (in addition to the impressed forces) by three fictitious

forces. The introduction of these forces is said to reduce the curve

to rest.

These forces are, (1) the force Fl
= mf by which the origin

is reduced to rest
; (2) the force F2

= mcarr acting on the particle

along the radius vector from the origin ; (3) F3
= mr -,- acting

perpendicularly to the radius vector in the direction tending
to increase 6. We also observe that the expression R Zmwv
takes the place of the pressure of the curve on the particle.

Here v represents the velocity relatively to the curve. The

velocity in space is the resultant of v and the velocity of the

point of the curve occupied by the particle.

By resolving the impressed and the fictitious forces along the

tangent we obtain an equation free from the reaction, and from

this the velocity v of the particle relatively to the curve may
be found. This equation is

= -

By resolving the forces along the normal inwards we have
2

=N + R-2ma>v,
P

where N is the normal component of the impressed and fictitious

forces. This equation gives R.
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If the curve turn with a uniform angular velocity about an

ted in *})ace, these equations become

ro (v*
- v 3

) =ftnv-rdr + /(Zdf -I- Ydrj)

= iwrs +0' + (7,

= ///W -'/ sin
</>
+ (Fcos^r ^ sin ^) -I- R 2mo>v.

198. Examples. />. 1. A bead can slide freely on a smooth circular wire.

Initially the bead is at rest at a point A. The circle then begins to turn with

uniform angular velocity about a point O in the rim, where OA is a diameter. Prove

that when the bead is at a distance r from O, the pressure on the curve

= wa (3r*-4ar)/2a,

where a is the radius of the circle and m the mass of the bead.

To reduce the circle to rest we apply the fictitious accelerating force F3
= urr.

Hence ^v
9= ^wha + C. Since the bead is initially at rest in space, it has a velocity

relatively to the curve v= - w . 2a when r=2a. Hence C = and r= - wr through-
out the motion. To find the pressure, we have

t- r R= -wr. + -- 2uv.
a 2a m

Substituting for t' its value, this gives the result.

Ex. 2. A bead is at rest on an equiangular spiral of angle a at a distance a

from the pole. The spiral begins to turn round its pole with an angular velocity w.

Prove that the bead comes to a position of relative rest when r = a cos a, and that

the pressure is then * mu-a sin 2a. Prove also that when the bead is again at its

original distance from the pole, the pressure is m<ir>asin a (3 + sin- a).

199. Time of describing an arc. A heavy particle is in

xtultle 1'im'tlHn'uim at the lowest point A of a smooth fixed curve.

e of a small oscillation.

Let
<f>

be the angle the normal at any point P near .1 mak -

\\ith the vertical, s the arc AP, p the radius of curvature at J.

Th-n $ is ultimately equal tos/p. The equation >t motion is

Mil
<f>

is expanded in powers of *. If the arc of oscillation i^

sufficiently small we m.-iy ivj-ct all the terms after the first powers

The time of a complete oscillat inn is therefore 2?r </p/g. The

scUlation is therefore the same as if the constraining curve

were replaced by the circle of curvature at A.

Win n it is necessary to take account of the small quant

he "pl.-r ^ it i.s more convenient to roj>

ii by its first integral, as in Ait. 200.
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Ex. 1. A particle P makes small oscillations about a position of stable equi-

librium at the point A of a smooth curve under the attraction of a centre of force

situated at a point C on the normal OAC to the curve, the magnitude of the force

being / (r) where r= CP. Prove that the time of oscillation is 2*- {.
ap

. J where
((a + p)*}

F=f(a), a=AC taken positively when C is on the convex side of the curve and

p=OA is the radius of curvature. Notice that the time is independent of the law

of force but depends on its magnitude F at A.

Ex. 2. A smooth wire revolves with constant angular velocity u about a fixed

point in its plane and a bead is in relative equilibrium on the wire at an apse at

distance a from the fixed point ; prove that, if slightly disturbed, the period of a

small oscillation is A / p
, where p is the radius of curvature of the wire at

u V a-p
the apse and is less than a. [Coll. Ex. 1887.}

Reduce the curve to rest, and use Art. 199.

200. Time of describing a finite arc. By using the

equation of vis viva the determination of the time can be reduced

to integration. The equation of vis viva is

where U= <j>(x, y) is a known function of the coordinates (x, y\
The constant C is known when the velocity is given at some

pointB whose coordinates are (h, k). We use the known equations

of the curve to express any two of the variables a, y, s in terms of

the third. Choosing s as this variable we have U = ty (s). Hence

w + CT
the integration being taken from one extremity of the arc de-

scribed to the other.

2O1. Ex. 1. A heavy particle is projected from a point A of a vertical circle,

centre 0, with such a velocity that it would come to rest at the highest point B.

Prove that the time of transit from A to P is A /log f where BOA=a rV 9 cot Ja
BOP= 6 and a is the radius. We notice that the time of arriving at the highest

point is infinite.

Ex. 2. Prove that the curve such that the time of descent of a heavy particle

from rest at a given point A down any arc AP is equal to the time down the chord

is a lemniscate.

Taking A for origin and using polar coordinates, being measured from the

downward vertical, the condition gives / r-.

8-^ 2 A / -. Differentiating
Jo*J(rcos0) V cos0

both sides and solving the differential equation we find that r2 =-4sin20. The

condition that the lower limit on the left-hand side is zero is found on trial to be
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satisfied by this value of r. The required curve is therefore a lemniscate with the

axis inclined at an angle of 45 to the vertical.

I. A. Serret remarks that if the ratio of the times were A- : 1, the differential

equation would be

This quadratic gives drl>-d0=f(8), and the solution is reduced to integration.

The history of this problem is given in the Bulletin de la Societe" Mathtmatiquet,
vol. xz. 1892. It was first solved by Euler in his Mfcanique 1736 and afterwards

by Fuss in the M^moires d-c. de Saint Petersbourg, 1824. Rispal gives a geometrical

proof in Liouville, xn. 1847.

Ex. 3. A particle is acted on by a centre of force varying as the distance. If

the time of describing from rest an arc from a given point A is equal to the time

of describing the chord, prove that the curve is a lemniscate. Ossian Bonnet,

file, vol. ix.

1. If the time of descent of a heavy particle from rest at a given point A
down any arc AP bears to the time of descent down the chord a ratio equal to

the ratio that the length of the arc bears to k times the length of the chord.

prove a
2 ~ = Cy, where y is the vertical ordinate of P and C is a constant.

202. Subject of integration infinite. A difficulty some-

times arises in finding the time of describing a finite arc AB if

velocity is zero at either limit. Let a particle be projected

in a point A in such a manner that the velocity of arrival at B
:. It is required to find the time of describing the arc AB.

Let the points A, B be determined by s = a, 8 = b. Since the

\ .

locity at B is zero, we have C= ^(b). The time of describing

tin- arc AB or BA is therefore given by

V ** ' =

Jj+w-
tin- limits of integration being a, b.

The subject of integratioa. is infinite at the limit =
6, but

th. integral itself may be finite. If we write = 6-f <r, we can

,-ivss tin work U in a series; let

where n is the lowest power of a- in the expansion. The part

of the integral from * = 6-<rto6((r being small) is J^j^
vanishes with <r if n < 2 but is infinite if n - 2 or > 2.

is usually happens, Taylor's expansion holds true, we have

n = 1 . The time to orfrom a position of rest is then finite.
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If the point B is a position of equilibrium as well as of rest,

we have dU/ds = when <r = 0. It follows from Taylor's theorem

that n = 2. The time to a position of rest at equilibrium is therefore

infinite. If Taylor's theorem does not hold, n may lie between

1 and 2 and the time is then finite.

Another rule, given by Despeyrous in his Cours de Mcanique, is useful when

iiniriti/ is the acting force. If B is a position of equilibrium the tangent at B is

horizontal. Let p be the radius of curvature at B, 6 the angle the normal at any

point P near B makes with the vertical. The equation of vis viva is then

The time t of describing a small angle a is therefore given by

/2jA* fa
dd

_

\p) ~Jol-co8~
The time of transit from A to B is therefore infinite unless the radius of curvature p

at B is zero.

2O3. Examples. Ex. 1. A heavy particle is constrained to describe the

curve x$ + y$=a$, the axis of y being vertical. Show that the radius of curvature

at every cusp is zero. Show also that a particle projected from the lowest cusp

with a velocity (2gaft will arrive at the next cusp in a time which is three times

that of falling freely from rest at the origin to the lowest cusp.

[Bespeyrous' problem.]

Ex. 2. A small ring can slide freely on a smooth wire bent into the form of a

cycloid. The axes of x and y being the tangent and normal at the vertex B, the

force function is given by U=Mym where m is positive and <1. Prove that if the

particle is projected from a point P whose ordinate is h with a velocity (2Mhm)* the
l-n

time of arrival at B is t where J/* (1
-

TO) t= 2o* h a
.

Ex. 3. If the only force acting on the particle is gravity U=gy. If y =Msn + . . .

prove that p= N*~* +... where N~ l =Mn (n
-

1), provided n> 1. Hence n < 2 when

p = and n=2 or is >2 when p is finite or infinite at the position of equilibrium.

Motion in a cycloid.

204. A heavy particle is constrained to move in a smooth

fixed cycloid whose plane is vertical and vertex downwards. It is

required to find the motion.

Let A, A' be the cusps, the vertex, OQD a circle equal

to the generating circle placed with its diameter on the axis OD,



ART. 204.
j

1 t NDAMKNTAL PROPERTIES. 121

C it< centre. Let PQN be a perpendicular on the axis drawn

from any point P on the cycloid. The following geometrical

A'

properties of the cycloid are given in treatises on the differential

calculus.

(1) The tangent at P is parallel to the chord OQ and the

arc OP is twice the chord OQ.

(2) The radius of curvature at P is parallel to the chord QD
and is equal to twice that chord.

(3) The distance PQ is equal to the circular arc OQ.

Let the angle QDO =
<f>,

and let a be the radius of the gene-

rating circle. The tangential and normal resolutions at P give

(Art. 181)

4a
(1).

Th first equation shows at once that the motion is oscillatory,

I IV The time of a complete oscillation is 4?r ,/- and i*

independent of the arc d -s< -ril> !. Let t be measured from the

ant at which the particle P passes the vertex, let c be the

semi-arc OB of oscillation. The first equation gives

It follows that if two particles oscillate in the same or in equal

cycloids both starting from the vertex, the two arcs described

in >

<[iial times are in a constant ratio, viz. that of the complete
arcs. If therefore the circumstances of the motion of a particle

oscillating h -p to cusp are known. those of a particle

oscillating in any smaller arc can b imim-iliatrly deduced.
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205. If b is the depth below the cusp of the extremity B of

the arc of oscillation, we have by the principle of vis viva

v2 = 2g (2a
- b - ON).

It follows at once from the geometrical properties of the curve

that

The first term is twice the resolved weight of the particle along
the normal at P

;
the second is the centrifugal force of a particle

moving uniformly with the velocity due to the depth below the

cusp of the extremity B of the arc of oscillation.

2O6. Examples. Ex. 1. A particle oscillates in a complete cycloid from

cusp to cusp. Prove the following properties.

(1) The velocity v at any point P is equal to the resolved part of the velocity

V at the vertex along the tangent at P, i.e. v = Vcos<f>.

(2) The time of describing an arc OP is proportional to the angle ODQ, i.e.

(3) The particle moves as if it were rigidly attached to the generating circle,

that circle being supposed to roll with a uniform angular velocity on the base AA'.

This follows from the last result because dfydt is constant.

(4) The centrifugal force at any point P is equal to the resolved part of the

weight along the normal at P, and the pressure is twice either of these.

Ex. 2. A heavy particle starts from rest at a point A of a cycloid, prove that

the time T of transit from any point P to any point Q is given by

where p, q, I are the depths of P, Q and the vertex below the level of A, and a is

the radius of the generating circle.

Ex. 3. A particle slides down a smooth cycloid starting from rest at the cusp.

Prove that the whole acceleration at any instant is in magnitude equal to g and

that its direction is towards the centre of the generating circle. [Coll. Ex.]

The required acceleration is equivalent to the resultant of g and R/m; the

result follows at once from the triangle of accelerations.

Ex. 4. A smooth cycloid is placed with its axis AB inclined to the vertical,

and its convexity upwards; a particle begins to slide down the arc from A, and

leaves the curve at P
;
the perpendicular from P on AB cuts at Q the circle on AB

as diameter, and QR is a diameter of this circle ; prove that P-R is horizontal.

[Math. T. 1888.]

207. When a pendulum is removed from one place to another

the number, n, of oscillations in any given time (such as a day)

is altered by the change in the force of gravity and the alteration
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of the length I of the pendulum due to a change of temperatmv
Since the number of oscillations in a given time varies inversely

as the time of a single oscillation, we have wa = Cg/l where C is

some constant. Taking the logarithmic differential, we find

o $n fy &
2 = ---=- .

n g I

This formula is a very convenient first approximation to the value

of Su.

208. ]'..'-. 1. Prove that a seconds pendulum brought to the summit of a

mountain x miles high loses about 22-r seconds per day if the attraction of the

mountain can be neglected. If the mountain is of the form of table-land, the loss

is only five-eighths of the above amount. The length of the pendulum is supposed
to be unaltered.

By Dr Young's rule the attraction at the top of table-land is g ( 1 - -
j
nearly

where a is the radius of the earth.

_'. A railway train is running smoothly along a curve at the rate of 60

miles per hour, and a pendulum which would ordinarily oscillate seconds is observed

to oscillate 121 times in two minutes. Show that the radius of the curve is

approximately a quarter of a mile. [Coll. Ex. 1895.]

:i. If the moon be in the zenith, prove that a seconds pendulum would be

losing at the rate of j-^th of a second per day.

The moon attracts the earth as well as the pendulum and its disturbing effect is

measured by the difference of its attractions at the centre of the earth and at the

pendulum. This is -
(-7)0

where M =^E is the mass, and r=60a is the

distance of the moon.

209. /-.'./-. 1. A heavy particle oscillates on a smooth fixed curve, and the

periods of oscillation in all arcs are the same. Prove that the curve is a cycloid.

Let the axis of y be measured vertically upwards from the lowest point of the

curve and let y = // be the initial value of /. Let the equation of the carve be

=/(y), where t is the arc measured from the lowest point. Since t>
2= 20(/i -t/)

of reaching the lowest point is given by

Put , = *, then ''-
J

Since the time t is to be the same for all values of A, we have df/rf/i
= 0. Henoe

; !{/<-
limtion requires that the second factor under the integral sign should be

zero. I! this were not true we could, by taking h small enough, make that factor

keep the same sign, while ht varies from hz = to hx = h. Every term of the integral

would then have the same sign and the sum could not be ero. Henoe ft*/' (to) is
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independent of h, and therefore/' (hz) =M (/*)"* where M is a constant independent

of h and z. We thus find by an easy integration that the arc / (y) = 2Jfy*. This is

the equation of a cycloid having the line joining the cusps horizontal.

Ex. 2. A body of mass M can slide on a perfectly smooth horizontal plane
and has attached to it a thin tube in the vertical plane containing the centre of

gravity. The form of the tube is such that the periods of the oscillations of a

particle of mass m placed in it are the same for all arcs. Prove that the form of

the tube may be derived from a cycloid by elongating the ordinates perpendicular
to the axis in the ratio J(M + m)IJH. This problem is due to Clairaut; Mem. de

I'Acad., Paris, 1742.

210. Resisting medium. If the particle oscillate on a

smooth cycloid in a medium resisting as the velocity, the tangential

equation of motion becomes

d*s
,

ds

-=-n~s-2^,
where n z = g/4a. This problem has been discussed in Arts. 121

and 126. The interval between two successive passages through
the lowest point is always the same and the successive arcs of

descent and ascent are in geometrical progression.

If the resistance vary as the square of the velocity, the motion

is discussed in Art. 129.

211. Tautochronous curves. When a particle oscillates

on a given smooth curve either in a vacuum or in a medium
whose resistance varies as the velocity, we know that the oscilla-

tion is tautochronous about the position of equilibrium if the

tangential force Fm^s where s is the length of the arc measured

from the position of equilibrium and m is a constant, Art. 118.

If therefore any rectifiable curve is given a proper force to produce
a tautochronous motion can at once be assigned.

A catenary is a tautochronous curve for a force acting along

the ordinate equal to mz
y because the resolved part along the

tangent is obviously m?s.

The equiangular spiral is tautochronous for a central force

fir tending to the pole, because the resolved part along the

tangent being m?s where m2 = p cos2 a, the time of arrival at the

pole is the same for all arcs.

In the same way the epicycloid and hypocycloid are tauto-

chronous curves for a central force tending from or to the centre
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of the fixed circle and varying as the distance, because since

? = As* + B,

the resolved part along the tangent, viz. prdr/ds, varies as s.

In all these cases the time of arrival at the position of equilibrium
is the least positive root of tan?i= n/K (Art. 121), where 2rcv is

the resistance and n- + k- m". The whole time from one position

of momentary rest to the next is TT/W.

The properties of tautochronous curves are more fully discussed in the author's

Rigid Di/n(imii\<. A historical summary is also there given.

212. Rough cycloid. A ^article slides from rest on a

:/h cycloid placed with its axis vertical in a medium whose

resistance varies as the velocity. Prove that the motion is tauto-

chronuns.

The descending motion is given by

-T: = pR g siu
</> 2/cv,

- = R gcos < ......... (1),

where v is really negative. Eliminating R

^-^v2 + 2/tt; + -^ sin (<-) = 0,
dt p cos e

where tan e = p. This may be written

J (ev) + 2* (ev) +^- e- sin (<
-

e)
= 0,

provided -r- = p -
,
that is u = -

/*<. Put eu ds - dw
;

'/
'

p

Now w - fer+ 4a cos ^>rf^>
= 4a cos e e~~** sin (^>

-
e).

The iMjuutinn th.-refore reduces to

S+2/;; +'"". =o.
dt9 dt 4a cos1

This is the linear equation, Art. \'2\ \\V int. i that at what-

ever point of the cycloid th< parti. 1. i- placed at rest, it arrives

at th pniiit E determined by w-Q, that is
<j>
- e, in the same

tiiiM-. Such a iiiMtiiiii IN called taut ..chi ..n,,u-. The point E is

clearly an extreme position of equilibrium in \\hich the limiting

tricti>n ju-t balances gta\ :
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The time of arrival at E is given by the least positive root of

the equation tan nt = n//c where na
-f K- = g/4>a cos

2
e. The whole

time from one position of momentary rest to the next is ir/n.

So long as the particle is moving in the same direction the

constant p retains the same sign. The motion is therefore

given by
e-rt sin

(</>
-

e)
= Ae~** sin (nt + B).

When the particle arrives at the next position of rest, it will begin
to return or will remain there at rest according as the value of

</>

at that point is greater or less than the angle of friction.

Motion in a circle.

213. A heavy particle is constrained to move in a faced circle

whose plane is vertical. It is required to find the time of describing

an arc.

Let C be the centre, A and B the lowest and highest points of

the circle, a its radius. Let P be the

B position of the particle at any time t
}

4> the angle CBP.

Let the particle be projected from

the lowest point with a velocity F.

The equation of vis viva gives

Let us put F2 =
2gh, so that the

velocity of projection is that due to

a height h
;
we also put h = 2a . KT. If K> 1, the velocity at

the lowest point is more than sufficient to carry the particle

to the highest point of the circle, the particle therefore goes

continually round the circle in the same direction. If K < 1 the

velocity at the lowest point is insufficient to carry the particle

round the circle, the particle therefore oscillates. If K = 1 the

particle arrives at the highest point with a velocity zero, but only

after an infinite time has elapsed, Art. 201.

Substituting for F2 in the equation of vis viva, we have

afd6\~ .~
hji = * - sm2 6

g\dt
(2).
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If t be the time of describing the arc AP which subtends an

angle 20 at the centre, we have

d<t> ^
WO^-sin^)'

where one radical is positive and the other has the same sign as

<t<f>
dt.

If K 1
, the integral is a known form. We have

\\hon <=i7r, t is infinite so that the particle takes an infinite

time to reach the highest point.

If K> 1, we write the integral in the form

g If* d4> ,..
.............

Tlii- <

lliptic integral* gives the time of describing the arc which

subtends an angle <f>
at the highest point of the circle. The time

of arriving at the highest point is found by writing JTT for the

upper limit.

214. When K < 1, we put * = sina. We see from (2) that

(f>
cannot exceed K and that the velocity is zero when sin

<f>
K :

the particle therefore oscillates on each side of the lowest point

through an arc AD or AE which subtends an angle a at the

highest point. Let sin
<f>
= K sin

>|r,
so that

>/r
varies from zero

to ^TT. We then find after an easy substitution in (3)

/ t = t
* d+ =

I

^
(exVo J cos</> JoV(l-*

This rlliptir integral determines the time of <1 s< iil>ing an angle <f>

where
<f>
and ^ are related by the equation sin

<f>
= K sin

>|r.

\\ can construct the angle ^ geometrically. Describe a circle

with mitre C to touch BD, and let BP intersect tin n Q;
ii the angle BQC = yfr.

For another construction we draw a

chord A'P equal to the chord AP, then the angle CBP
1 - V-

- reader is referred to Prof. OreonhillV tht application of

"*. He begins with the problem of the simple circular pendulum as

:* the best introduction to the theory of these functions.
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In obtaining (6) we supposed the sign of cos
>|r

to be the same

as that of the radical in (3) and therefore the same as that of

d<f>/dt. Since cos
<f>

is positive, it then follows from (6) that

d^/dt is positive. The point Q therefore travels round the circle,

being the lower or upper intersection of BP with the circle accord-

ing as P is moving from A to D or from D to A.

215. Series for the time of oscillation. We may approxi-

mate very closely to the time of a complete vibration by using a

series. If T be this time, the formula (6) gives \T when the

upper limit is JTT. We have by the binomial theorem

(l-/c
2 sin2

^)-*

.+
1

-*^
By a theorem in the integral calculus

'* 1.3.5...(2?i-l) TT

'

' 1 Tr
" Y =

2.4.6... 2n '2

It immediately follows that

/:

where tc = sin a and a is the angle subtended at the highest point

of the circle by the half-arc of oscillation. It is also useful to

notice that K is the ratio of the chord of the half-arc to the diameter

of the circle.

The first term of this series represents the time of an infinitely

small oscillation. The other terms are regarded as small correc-

tions to this time, and are sometimes called the "reduction to

infinitely small arcs." The second term is usually a sufficient

correction. Thus suppose the arc of oscillation on each side of the

vertical to subtend an angle of 36 at the point of suspension,

then <z= 18 and K = ^. The second term is only about 3̂ th and

the third -th of the first.

216. Relation between continuous and oscillatory motions. Comparing

the formulae (5) and (6) we see that the integrals are the same except that the

moduli K and I/K are reciprocals. This leads to a theorem by which we connect a

motion all round the circle with an oscillatory motion.

Let two particles P, P' be projected from the lowest points A, A', of two circles

of radii a, a', and let these be acted on by unequal gravitational forces g and g
f

.

Let the velocities of projection F, V be such that the moduli are reciprocals.

Then K being less than unity, we have F 2= 4a0K
2
,
F /2=4ay/Ks

. It then follows from
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what precedes that the particle P' travels round the circle and P oscillates in a

arc equal to AD, where the angle DBA = a and /c= sin a.

Let P, P/
be the positions of the particles when the angles ABP=<f>, A'B'P/

=\f/ t

where sin = * sin \1/. If t, t' be the times of describing the arcs AP, A'P we have

/*r =V '

It follows therefore that
? *'= *

/'V
* The points P, P* therefore corre-

spond to each other in the two motions, and it is easy to see that they are

geometrically connected by the relation

chord AP _ tea _ chord AD
chord A'P'

~
a'
~

diam. A'B'
'

It is obviously convenient that the particles should occupy corresponding points

at the same instant of time. We therefore choose the constants a', </', so that

t = t'. We then have g'\a'=tPg\a The equations of motion take the forms

ftla d<j>V j dt * =C08 *'

where the coefficients on the left hand are equal.

If we make the radii equal we can suppose both particles to describe the same

We then have

a, A'P'=
l
-.AP.

217. /:,.!. If the circle described by P' has AM for its diameter, prove that

/ /" move so as to be always on the same horizontal line, the gravitational forces

being g and gx* respectively.

-'. If the circles are equal and the arc PP* is bisected by a point Q t prove

that Q moves < as if it were a third heavy particle acted on by a gravi-

tational force 0" = 0*. The velocity of Q at A (and at all points) is equal to the

mean of the velocities of P and P'. Prove also that Q goes half round while P*

goes all round. Sang, Edinburgh Tmns. 1866, vol. 24.

These results follow at once from Art. 216.

218. Relations between two oscillatory motions. The investigation of

these relations is properly a part of the theory of elliptic integrals, but the following

theorem will serve as an example.



130 MOTION IN A CIRCLE. [CHAP. IV.

If T, T be the periods of oscillation corresponding to two semi-arcs which

subtend angles a, a' at the highest point of the circle and so related that

sin a = (tan a')
2

, then will T= T (cos i a')-.

The half arc of oscillation being defined by sina = /c, the time t of describing

the angle is given by

/g f-f* d+ . f*j*L
V Jo Vt1 -*38"12 ^) Jocos0'

where sin = it sin ^. Let 20= + ^, so that 6 is the angle the arc A'Q in the

figure of Art. 213 subtends at B'. Eliminating we find tan^=
K+ COB20'

We

shall now change the independent variable from
\f/

to 0. The simplest (though not

the shortest) method of effecting this is to find d\f/ by differentiation and sin2
\f/ by

trigonometry both in terms of 6. The substitution is then obvious and we have*

__*_ 1 (*_de
._

/(l
- *2 sin2 ^)

~
1 + K J o x/(l

- X2 sin2 6)
'

where X= 2 X/K/(1 + K). Remembering that K= sina and sin = /c sin f, we now

write X=sina' and sin0' = Xsiu 0.

Let two particles P, P' oscillate in the circle APE through arcs AD, AD' which

subtend angles a, a' at the highest point B, then the last equation shows that the

times f, t', of describing corresponding angles 0, 0', are connected by the relation

* 8*7(1+*).

To compare the changes of the values of these corresponding angles we refer to

the figure of Art. 213. As P moves from A to D and back to A, Q travels round

the semicircle A'QB', 26 increases from to TT, and 0' increases from to a'.

Thus the oscillation from A to D and back to A corresponds to the oscillation A

to D' only, i.e. a complete oscillation of P corresponds to half a complete oscillation

of P'. If T, T' be the times of a complete oscillation of P, P, we have therefore

T=T'I(1 + K
).

The two angles a, a' are connected by the relation

2jK lCOBa'sma=X= -
; ,*. JK= : 7.

1 + K sin a'

Since /c<l and a' <^ir we take the lower sign in the value of ^/K. Hence

sin a= (tan % a')
2
. It follows also that t= 2t' (cos a')

2
.

Ex. If d], do, ... be a series of angles connected by the relation

and if Tl be the time of a complete revolution in an arc subtending 4a
:
at the point

of suspension, prove that

T! = (sec ^ d, . sec \ a, . . . to oo
)
2

. 27r N/(a/#). [sang.]

219. Co-axial Circles. Two heavy particles, constrained to describe the

same vertical circle, are projected from any two points with velocities due to their

depths below the same horizontal line. It is required to prove that the straight

line joining the particles always touches a co-axial circle.

*
Cayley's Elliptic Functions, Art. 243.
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Let Oy be the radical axis of two co-axial circles whose centres are C, C'.

Let a tangent at any point T of one circle intersect the other in two points P, Q.

Let PM, QN be perpendiculars on the radical axis. By a known property of

co-axial circles the tangents PT, QT drawn from points on the outer circle satisfy

the relations*

=2 . ccf
. PM, gr-=2 . cc' . v\.

In the time dt let the tangent move into the position P'TQ'. Then since the

elementary arcs QQ', PP', make equal angles with the chord P'Q', the triangles

. PTP are similar : hence

It follows from these two geometrical theorems that

(veL of <?)
3
/(vel. of P)*=Q.V/P.V.

If then the point P move with a velocity equal to (2</ . PA/)*, the point Q must

move with a velocity equal to (2<; . QN)*. It follows that the points P, Q are the

positions of two particles moving with velocities due to their depths below Oy.

If the radical axis is external to the circle described by the particles, the

particles go round the circle. If the radical axis intersects the circle in the two

points D and E, the particles oscillate in the same arc DA I .

In the figures the particles have been supposed to move the same way round the

. If their directions are opposite the chord PQ envelopes a circle or a part of

a co-axial circle situated above Oy.

properties of co-axial circles are fully discussed by geometrical method*

in Lachlan'H Modern Pure Oeometry. The following is an analytical proof of the

property PT*=*.CC. PM.

Let r, c' be the distances of the centres C, C' from Oy t 6 the length of a tangent

drawn from O to any co-axial circle. The equations of the circles are therefore

v be any point P external to the first < in )< . //' a tangent

<y*+*.
It /' lie on the second circle this becomes 2 (c

-
c') x by subtracting the second

equation. This is the result to be proved.

0-2
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The point of contact T divides the chord PQ in the ratio of the velocities at

P, Q. That point is therefore the centre of gravity of two masses placed at P, Q
inversely proportional to the velocities at those points. The ordinary formulae for

the centre of gravity enable us to write down the distance of T from any straight

line. It follows, for example, that the depth of T below the radical axin in the

geometrical mean of the depths of P and Q.

Some positions of P, Q, and therefore of T, being known from the initial

conditions, the circle enveloped by the chord touches PQ in T and has its centre

in OA. The distance between the centres C, C' may also be found from the

equation PT2=2 . CC' . PM. If x, x' are the initial depths of P, Q, I the initial

chord, it follows that ^/(2 . CC*) = */(V* + >/*')

Let the two particles P, Q take the positions P', Q' after the lapse of any finite

time t. It follows that a third particle It moving on the circle with a velocity due

to its depth below Oy will describe each of the finite arcs PP", QQ' in the same

time t. By adding or subtracting the time of describing the arc P'Q, we see that

the times of describing PQ, P'Q', i.e. the arcs cut off by any tico tangents to a co-axial

circle, are equal.

When the radical axis is external to the system of circles there are two points

L, L' one on each side of Oy which are the positions of the two co-axial circles

whose radii are zero. Since L is an evanescent circle the distance OL is equal to

the tangent drawn from to any co-axial circle. Also, for the same reason, any

straight line drawn through L divides the circle APB into two parts which are

described in equal times.

22O. Examples. Ex. 1. A circle is drawn to touch at their middle points

the chord and arc of oscillation of a particle which is moving on a vertical circle

under the action of gravity. Prove that a point on the first circle in the same

horizontal line with the particle moves with a velocity equal to 2 v/(r/r) sin2 a cos

where r is the radius of the circle on which the particle moves and a, 6 are the

angles which the radius drawn to the particle makes with the vertical at the instant

when it is stationary and at the instant considered. [Math. Tripos.]

Ex. 2. A particle describes a vertical circle of radius a with a velocity due to

its depth below the highest point B. Prove that the radius of the circle enveloped

by the chord joining any two positions of the particle at a constant time interval T
is a/cosh

2
(T^/g/a). Prove also that the depth of the point of contact of the chord

and its envelope below B is 2a/cosh j
cosh 2 where 1N/a/gr and 2 \/a/0 are foe

times from the lowest point of the extremities of the chord. [Coll. Ex. 1897.]

Ex. 3. Prove that if a particle move round a circle so that its velocity is pro-

portional to the product of its distances from two fixed points in the plane, one

inside and one outside, any circle drawn through them divides the orbit into two

parts which are described in equal times. State the corresponding result when the

points are both inside, or both outside. [Math. Tripos, 1888.]

Describe two consecutive circles through the fixed points A, B to cut the given

circle in the points P, P' and Q, Q'; we shall prove that the times of describing

the elementary arcs PP', QQ' are equal.

The distance between any two parallel tangents to these co-axial circles is

easily seen to be proportional to the product AP . BP where P is the point of
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contact of either. If then PR, QS are any two normals to the circle APQB inter-

secting the consecutive circle in R and S, the time of moving from P to R is equal
to the time from Q to S.

Because the given circle and the circle APBQ&re symmetrical about the straight

line joining their centres, the tangents PP', QQ' make equal angles with the

normals PR, QS ; the lengths PP', QQ' are therefore proportional to PR, QS.
The arcs PP', V<?', therefore, are also described in equal times.

Let ABCD be any one co-axial circle cutting the given circle in C, D. Then

describing all the co-axial circles, each elementary arc PP* in the larger arc CD
has a corresponding elementary arc QQ' in the smaller arc CD, and these are

described in equal times. The times therefore of describing the smaller and larger

arcs CD are equal.

Wherever A, B may be, let two of the co-axial circles cut the given circle in

C, D and C', D'. It follows from what precedes that the times of describing the

arcs CC', DD' are equal.

I. A particle oscillates in a circular arc EAD, see fig. of Art. 219. A
tangent is drawn from A to the co-axial circle to cut the arc of oscillation in A.

A horizontal tangent to the same co-axial cuts the same arc in Y. It follows from

the theorem of Art. 219, that the time of moving from A to X is twice that

from A to 1'. Prove that this is equivalent to the theorem

(*' d* /> d*
] o ^(1 - a sin2 ^j ] o %/(l

- ** sin ^)
'

where sin ^'= 2 sin
\f/ cos^(l-<r sin2 ^) (1- /c

3 sin4
\f/)~

l
.

[Cayley's Elliptic Function*, Art. 249.]



CHAPTER V.

MOTION IN ONE PLANE.

Moving Axes.

221. THE components of velocity and acceleration along the

axes of coordinates, the tangent and normal to the path and in

some other directions have been already considered in Chapter I.

The solution of the more difficult problems in dynamics requires

however that we should have at our command a greater power
of resolution than is given by these. We shall now investigate

the general components for any moving axes in one plane.

222. To avoid the continual repetition of the same argument,
we shall use the term vector to represent the subject under con-

sideration, whether it be a velocity or an acceleration.

Let us understand by a vector any quantity which has direction

as well as magnitude, and which obeys the parallelogram law.

Thus the radius vector of a point P is a vector and its resolved

parts along the axes are the coordinates x and y. Again the

velocity of P is a vector, and its resolved parts along the axes

are dx/dt and dy/dt. The acceleration of P is also a vector and

the resolved parts are d2

x/dt
z and d*y/dF. Lastly if R be any

vector whose direction makes an angle -x/r
with the axis of x, its

components along the axes, supposed to be rectangular, are R cos ty

and R sin ty.

223. Fundamental theorem. A vector R having been

resolved in the directions of two rectangular axes Og, Orj which

turn round a fixed origin in a given manner, it is required to find
the rates at which these components are increasing with the time.

Let P be the position of the moving point at any time t.

Draw a straight line PQ to represent the instantaneous direction
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and magnitude of the vector R. Let u, v be the resolved parts of

thr vector in the directions of the axes Of, Orj.

After a time dt, the point P will occupy a position P y the

vector R will become R + dR and may be represented by the

straight line PQf

. The axes Of, Orj will turn round through a

small angle d</> and will take the positions Of, Orj'. The resolved

parts of R + dR along these new axes will be u -f du, and v + rfv.

At the time t the component of the vector in the direction Of
'. At the time t + dt the component in the same direction

( Le. in the direction Of not Of) is

(u + du) cos
d(f> (v + dv) sin

d(f>.

Tluj rate of increase of u in the direction Of is found by sub-

tracting the component at the time t from that at the time t + dt

and dividing by dt.

It we represent the rate of increase in the direction Of by ult

we have

[(u + du) cos d<f) (t; + dv) sin d<f>]
u

~dt~
When we reject the squares of small quantities according to the

rulo.H of the differential calculus, we write unity for cos d$ and

d<f> for sin
(/</>.

We therefore have

d<f>
Ul ~

df
~ v

2f
'

In tli- MOM way it the rate of increase in the direction Oij

^ (u + du) sin
d<f> + (t; 4- dv) cos d<f> v
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224. This theorem is of great importance and particular attention should be

given to the meaning of the letters. The rate of increase of u in the direction of

the moving axis O is . Its rate of increase in the direction of an axis fixed in

space which is coincident with the position of at the time t and which is left

behind when moves into some other position 0' is
-^

- v
-p

. It is the latter

rate of increase not the former which i* required in dynamics.

To make this point clear let us suppose that u represents the component

velocity of a point P. Then

/component along O'\ /component along_ _
\ Attimet + dt ~\ time t

/comp. along OA /comp. along O
Vd
*=( timet + dt )-( time*

When it is necessary to distinguish between these two we may call the first the

relative rate and the second the space rate of increase of the vector.

225. There is another method of establishing the fundamental
theorem which is very generally used and which puts the argument
into a more algebraic form.

Let the moving axis Of make an angle <j>
with an arbitrary

direction Ox fixed in space. Then if U be the component of the

vector along Ox,

U u cos
<j)

v sin
<f> ;

dU fdu dd>\ i d6 dv\ .

'

-jr = I 37 ~ v j*-cos -
(u

- + -T7 1 sin <f>.

dt \dt dt J \ dt dt]

This gives the rate of increase in the direction of the fixed

axis Ox. Let Ox coincide with Of and be left behind when Of
moves into the position Of, then < = though d(f)/dt is not zero.

By definition dU/dt = ul ,
and therefore

du d<b

Again let Ox coincide with Orj and let it be left behind when Or)

moves to Orj'. Since
<j>

is the angle Of makes with Ox measured

from Ox round positively in the direction f?;, the instantaneous

value of
(f>

is ^TT though as before it is increasing at the rate

d(f>/dt. By definition dU/dt is now vlt and hence

dv dd>=
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226. Ex. 1. To deduce the component* of velocity and acceleration along and

perpendicular to the radius vector, Art. 35.

We take the arbitrary axis of to coincide with the radius vector, then = 0.

Regarding =r, 77
= as the components of the vector r, the space components of

the velocity are

d dO dr drj ^18 dO
!
=
dt

-
ri
dt

=
dt>

'=
Tt

+
*Tt

=r
di'

Taking the velocity as a second vector, the components are u = drjdtt
v =

and the space components of the acceleration are

de\-

dd 1 d dO

_. /'o deduce the components of acreleratiim along the tangent and normal,

Art. 36.

Taking the axis of parallel to the tangent, we have 0=-^. Let the velocity

be the vector, then it represents the velocity and v = 0. The components of accelera-

tion are therefore

du d* du <lc d+ d$

227. To find the components of velocity and acceleration with

d to moving axes.

Let the position of the moving point P be given by its co-

ordinates (f, ?;) with regard to two rectangular axes Of, Orj which

turn round a fixed origin with an angular velocity d<p/dt. Let

(w, t>)
be the components of the velocity of P parallel to the

instantaneous positions of Of, Orj. Let(Jf, Y) be the components
of the acceleration of P. The relations between (f,^), (u, r) < A ) >

follow at once from the general theorem. We have

rff d<b dr)

*' -d dt

Substituting tni- u. r in the latter expression^ their values given

by thf termer, we have

'*v

// th^ '

i-8 also in motion, these equations require some

L-t
/ 7 be the components of the space velocity



138 MOVING AXES. [CHAP. V.

of the origin in the directions of the axes. Let u, v continue to

represent the components of the space velocity of the point P.

To find u, v we add to the expressions (A) for the relative

component velocities the component velocities of 0, Art. 10. We
thus have

These equations give the motion of P referred to a system of

moving axes having any fixed origin but always remaining parallel
to the original moving axes. With these values of u, v, the

accelerations X, Y will continue to be expressed by the

formulae (B).

228. We may deduce the expressions (C) for the accelerations

X, Y in terms of the coordinates f, rj from the theory of relative

motion, explained in Art. 10.

The motion of P in space is made up of the velocity relative

to M together with that ofM in space ;
see

fig.
of Art. 223. Now

OM is the radius vector of M, and the component velocities in

the directions OM, MP are f
'

and f<', while the accelerations in

the same directions are

r-W and
| |(P*')

where accents represent differentiations with regard to the time.

Again regarding M as fixed, MP is the radius vector of P, hence

the component velocities of P along MP and parallel to MO (not

OM) are rf and
??(/>',

while the accelerations in the same directions

are 77" -j^'
2 and - : =- (rf <'). Adding together these components,

we obviously obtain the values of u, v
; X, Y already given in

Art. 227.

229. Relative and actual path. When the motion of a point is referred to

moving axes 0, Oi) it is necessary to distinguish between the path in space and the

jiutli relative to the moving axes. Suppose a sheet of paper to be attached to the

moving axes and to turn round the fixed point with them. The point P traces

out on this sheet the relative path which is not the same as that traced out on a

sheet fixed in space.

The coordinates of P in the relative motion are (, ij) and the displacements

parallel to these axes are d and drj. The direction of the tangent of the relative

path and the radius of curvature of that path are therefore found by the ordinary
rules of the differential calculus. The coordinates of P in the path in space are

also (, TJ), but the displacements have just been proved to be d% - rjd<f> and drj + l-dif).

These must be used instead of dx and dij in the formula; of the differential calculus.
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Let us represent by accents the differential coefficients with regard to any
independent variable t. The formula of the, di/<'rcnti<il calculws giving the space
motion of P referred to fixed axes may be adapted to moving axes by irritinji M, r

', y' respectively, where n = f'-?#>', v = r)

' + f0', and M,, v
l for .r", y" where

Thus, if ^, x be the angles the tangents to the relative and actual paths make
with Of, and p, Ji be the radii of curvature of these paths, we have

T'
T7
/2
)* , ,, , (tr' + v3)*

p R r2)0 *

i we apply kinematical theorems to purely geometrical properties in which

the idea of time is absent, we regard t as an auxiliary arbitrary quantity introduced

to represent the independent variable. If we wish the arc x to be the independent

variable, we write t=.
The effect of these changes may be exhibited in a figure. Let P, 1" be the

positions in space of the moving point at

aes t, t + </f,and Of, Of the positions

of the axis of reference at the same times.

It 7M7, P'N be perpendiculars on Of, Of,
\ve have

f, ONm(+4tt MI' =
r),

NP'= ij + dri (A).

Let P'M'. I'll be perpendiculars on Of
and P'M' respectively. The coordinates of

/'. P' referred to axes Of, Or) fixed in space for a time dt are

These values of MM', V'H follow at once from Art. 223, but they may In-

obtained by projecting the broken line OX, NP on Of, On. If x be the angle the

tangent PP makes with Of and d<r the arc PP', we have tanx = P'#/P# and

(</<r)- = (P7/)
3
-f (P//)

2
,
and these by substitution from (B) lead to the same results

as before.

230. Many of the formula used in the differential calculus may be inferred

by resolving the accelerations in different directions. For example, the formula)

tht radius of curvature in polar coordinates may be written down by simply

resolving the polar accelerations of Art. 35 along the tangent and equating the

result to V*in. The expressions for R in Cartesian moving and fixed axes may be

obtained in the same way.

231. Examples. / . 1 I i

;

: :.n of a point P is referred to rectan-

gular axes Of, f,/i) which move so that Q describes

n curve .10 while Of is always a tangent to

rve. Prove that the component vel<

and accrU-mtiou* f /' un-

A u' - r0',

where 0' is the angular velocity of f, and 0' = '/P*

Deduce an expression for the radios of curvature of the space locus of P.
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Ex. 2. A particle P is attached to the extremity of a string of length I which

is being wound on to a fixed curve after the manner of an involute. Prove that

the component accelerations of P along and perpendicular to the straight portion

of the string are respectively

A'=-0'2
, r=*V + 0",

where
<f>'

is the angular velocity of . Also 0'= -
'/p.

Ex. 3. Assuming the earth to be uniformly describing a circle of radius a

about the sun with velocity U, and the sun to be moving in a straight line in the

plane of the earth's orbit with a uniform velocity V, prove that the radius of

..,._... . .

curvature at any point of the earth s orbit in space is !-- =
-.

-
, where

is the angle the line joining the earth and sun makes with the direction of the

sun's motion. [Coll. Ex. 1892.]

Ex. 4. A fine string wound round a circle has a particle P attached to its

extremity and the circle is constrained to turn round its centre in its own plane

with a uniform angular velocity u. The particle is initially in contact with the

circle and has a velocity V normal to the circle. If be the length of string

unwound at the time
, prove that - = a2w2

f
2 + 2aFt.

Ex. 5. A particle P is attached by a rod PA without mass to the extremity of

another rod AB, n times as long, which revolves about the other extremity B, the

whole motion taking place in a horizontal plane. If 6 be the inclination of the

rods, (a the angular velocity of AB at the time t, prove that

O. [Math. Tripos, I860.]
at* at \at J

232. Oblique axes. The general method of finding the resolved velocities

and accelerations of a point referred to moving axes may be extended to oblique

axes. These extensions however are not of any great importance because oblique

axes are seldom used in mechanics.

Let 0, Or) be any two axes which make angles 6, <f>
with an axis Ox fixed in

space. These angles we shall suppose to be perfectly arbitrary so that the angle

|Oj; between the axes is not necessarily constant. See figure of Art. 223.

Let PQ represent any vector
; u, v its components obtained by oblique resolu-

tion according to the parallelogram law. Let u lt vlt represent as before the rates

of increase of the components of the vector in directions fixed in space but coin-

cident with the positions of O, Or] at the time t.

Let us resolve the vector in a direction perpendicular to 0. The resolved

parts of MJ and v
l
are clearly zero and v, sin (0

-
6). Since O?=d6, -rjOrj'

=
d<f>, the

resolution gives

v sin (0
-

0)= K
u+ du )^ d8+ (v + dv) sin (0 - 6 + d0)] -[v sin (0

-
0)]

By resolving in a direction perpendicular to Orj we obtain in the same way
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If , rj are the oblique coordinates of P, the space velocities u, v of P are

similarly

B -*+

The advantage of resolving perpendicularly to and Oi; is that only one of

the components M,, r,, enters into the resolution. We thus obtain each indepen-

dently of the other. If we resolve in the directions 0, Orj we obtain the values

of M! + r
x
cos

(<f>
-

6) and
t?j + M

I
cos

(<f>
-

6) and, from these, M, and v
l
can be obtained

by solving the equations.

These values of M, , t^ were first given by H. W. Watson in the Math. Tripos of

1861.

233. Hyper-accelerations. It is seldom that we use higher differential

coefficients with regard to the time than the second, Art. 21. When these are

required the general theorem on vectors (Art. 223) gives the components for differ-

ential coefficients of any order.

Let .r, >/ be the coordinates of a moving point referred to fixed axes, then

Xn = dnx dt n , Yn = dnyldt
n are the components of the space hyper-acceleration of

the nth
order, Art. 21. Let 0, Or) be any set of moving axes, the relations

between the space components of two successive orders of acceleration are

_dXn <*0 _dYn d*
AW+I ~

~dt

~ **
~dt

' r"+1
-

dt
+ n Tt

'

The reader may consult a Note Sur let Principe* de la Mtcanique by Abel

Transon, Liouville's Journal, vol. x. 1845, for another mode of treatment.

1 . A point moves along a curve with velocity u, prove that the components

along the tangent and normal of the acceleration of the third order are respectively

d*u tr d

->. A point P moves along a curve with uniform velocity. Prove that

tan 5= J cot 5' where 8, 8' are the angles the diameter of the parabola of closest

contact and the direction of the hyper-acceleration make with the normal at P.

Show also that the semi-latus rectum of this parabola is p cos3 8.

jyAleinbert's Principle.

234. When a single particle moves under the action of gi

forces the equations of motion may ii il be found by re-

solving the forces in some convenient <lin dions. In the case

of a system of parti-|i-s th- mutual ivartimis must also be taken

into the account; these are in gcn< ml unknown and will have

to be eliminated from the equations. It is important to be able

rite down some of the results of this rliminati < n without

Arming the equations of motion of every particle. Various
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methods have been given to effect this either completely or

partially.

When in a statical problem, we wish to avoid introducing into

our equations the mutual reactions of two bodies, we treat the

two as one system. We resolve and take moments for the two

bodies as if they were one. We may adopt the same method in

dynamics.

235. In applying this principle to dynamics, it will be found

convenient to use the term effective force. This may be denned

as follows. When a particle is moving as part of a system, it is

acted on by the external forces and the reactions of the other

particles. If we consider this particle to be separated from the

system and all these forces removed there is some one force

which, with the same initial conditions, would make it move in

the same way as before. This force is called the effective force on

the particle.

It follows that the effective force is statically equivalent to

the impressed forces which act on the particle and the reactions

of the rest of the system, but is differently expressed. Let m
be the mass of the particle, (x, y) the Cartesian coordinates

;
the

components of the force which must act to produce any given
motion have been proved to be md*x/df and md-y/dt

2
,
these then

are the components of the effective force. In the same way if v

be the velocity and l/p the curvature of the path, the tangential
and normal components of the effective force are mdv/dt and mv-/p.

See Art. 68.

236. Considering any one particle of the system, we know

that the resolved parts of the effective forces in any directions

are equal to the corresponding resolved parts of the impressed
forces and the reactions. It immediately follows that the effective

forces on each particle, if reversed, are in equilibrium with the

impressed forces and the reactions. But, by Newton's third law,

the mutual reactions of any two particles are in equilibrium.

Making then any selection of the particles of a system, the reversed

effective forces of those particles are in equilibrium with the external

forces which act on them, excluding their mutual reactions, but

including the pressures (if any) of the remainder of the system.
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Some of the equations of motion may therefore be found (1) by

equating the sum of the resolved parts of the effective forces in

any convenient directions to the sum of the resolved parts ..t'

the external forces, (2) by equating the sum of the moments of

effective forces about any point to the sum of the moment-

the external forces.

The resolved parts and moments of the external forces may
be written down by the rules of statics. The components of t In-

effective forces in various directions have been found in the

preceding articles. The moment about any point then follows

by multiplying that component by the length of the perpendicular
from 0, Art. 6.

^
<-''i> yO> (^2. !/*)

&c. are the Cartesian coordinates of a system
of mutually attracting particles whose masses are .??&,, m.2 &c., and

it these are acted on by the external accelerating forces (Xlt F,),

(X?, Y.,) &c., the equations of resolution and moments are

iv the S implies summation for all the particles.

237. So long as we confine our attention to resolutions and moments it is

unnecessary to include the mutual actions of the particles under consideration.

If however we use the principle of virtual velocities to express the conditions of

mi we must remember that the particles may not be rigidly connected

Now the work of two equal and opposite forces F, -
1<\ acting on two

particles distant r from each other is proved in statics to be /'./>. It is obvious

that this does not vanish unless the distance r is invariable. This point is impor-
tant in using the principle of vis viva.

The most convenient way of applying the principle of Virtual Velocities to

Dynamical problems is to use Lagrange's equations.

238. When the selected system of particles is a rigid body,
mutual distances of the particles composing it are invariaMe.

It is proved in statics that th <n of such a body in

space of two dinn-nsi.-!^ can !>< defined by three quantities usually

'Vil.-'l coordinates. For example, these might be the Cartesian

coordinates of some point and the angle which some straight

ii th- body makes with some straight line fixed in

toe, Three independent equations of motion, free from mutual
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reactions, are therefore necessary and sufficient to determine the

position of the system at any time t. These three are supplied

by the two resolutions and the equation of moments above

described.

It is proved in statics that a system of forces can be reduced

to a single force R acting at some convenient point and a

couple G. The components of the force R are equal to the sums

of the components of all the forces of the system, and the couple G
is equal to the sum of their moments about 0. This is usually

called Poinsot's method of compounding forces. We shall now

apply this method to find the resultants of a system of effective

forces.

239. A system of particles, rigidly connected, moves in space

of two dimensions. The coordinates of the centre of gravity are

(x, y), the angle which a straight line fixed in the body makes

with a straight line fixed in space is
<f>
and the whole mass is M.

It is required to prove that the effective forces of the whole system
dzx dzy

are equivalent to two effective forces M-j^,
M -r^ acting at the

centre of gravity, and an effective couple Mk* -~
,
where Mk2

is a

constant which depends on the form and structure of the body or

system.

Let m be the mass of any particle of the body, x = x + f,

y = y + rj
be its coordinates. Then since 2ra/2?ft, Sra?7/2m are

the coordinates of the centre of gravity referred to the centre of

gravity as origin, it is clear that 2raf = 0, 2m?; = 0.

The sum of the resolved parts of the effective forces parallel to

the axis of x is

The resolved part parallel to the axis of y may be found in the

same way. These two effective forces are the same as the effective

forces of a particle whose mass is M placed at the centre of gravity

and moving with that point in space.

240. To find the effective couple we take moments about

the centre of gravity. Remembering that f, 77 are the coordinates



ART. 241.] THE EFFECTIVE COUI'LK. 145

of the particle in when referred to the centre of gravitv, Un-

couple is

Since S//<f=0, ^77 = 0, the right-hand side reduces to the first

t'-nn. Let
/>,

be the polar coordinates of the particle m, referred

to the centre of gravity as origin, then gdrf 7jd =
pd&. The

couple is therefore

d

-wow introduce the condition that the particles are
:

<lly connected together. When this is the case the ddjdt of

every particle is equal to d<f>/dt, and the length of every p is

stant during the motion. For, let a be the angle the radius

tor p of any particle m makes with the straight line fixed in

the body, then =
</>4a. Though a may be different for even

particle, yet its value does not change during the motion, hence

'It = 0, and dO/dt = d<p/dt. The effective couple is (Snip*) .

241. Thr constant ^mp- is called the moment of inertia of

the system about an axis drawn through the centre of gravity

perpendicularly to the plane containing the particles.

To find the moment of inertia of umj xi/stem air axis,

we T)t/fij>!>/ tin* mass of every particle by the square of its distance

the axis and add the results together.

When the particles are so close together that they form .1

continuous body, the sum is an integral. Thus for a circular

area of radius a and density D, the area of any elcnu-nt is p dOdp ;

h. no. the moment of inertia ab-ut an axis drawn through th<

centre perpendicular t<> its plain- is

1m? = ffDpdedp . p*
= D [Jp] . [6],

where the square brackets imply that ih. quantity is to be tak

between the limits of integration. These limits being p-0 to a,

|0 = () to 27T. th. moment of inertia about the centre is JJ/

In th- same way the moment ot in. -rtia of a rectangle whose

s are 2<i anl -h about an axis drawn through the centre of

gravity perpeiulicuUr to its plane is J3f (a*+ 61
).

10
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The moment of inertia of a sphere of radius a about a diameter

is %Ma\

The moment of inertia of a triangular area about any axis is

the same as that of three particles each one-third of its mass

placed at the middle points of the sides.

242. The moment of inertia is of special importance in rotational motions,

for, in a certain sense, it measures the dynamical significance of the form and

structure of the moving body. Thus all free bodies having equal moments of

inertia rotate with equal angular accelerations when acted on by equal couples.

The translational motion depends on the mass and the position of the centre of

gravity, Arts. 92, 239.

243. Sufficiency of the equati&ns. The equations of motion of a particle

moving freely are

d*x_ d*y

~w~ ' 3? '

where X, Y are the accelerating components of the forces, Arts. 68, 73. We shall

now prove that when the initial values of x, y, dxjdt, dyjdt are also given, these

equations are sufficient to find x, y as functions of t.

To prove this we replace the proposition by a more general theorem, the limit-

ing case of which is the proposition to be established. Let T be any very small

time which we shall afterwards replace by dt. Let x = (), y = ^ (t) ; the equations

may be written in the functional forms

where X, Y are known functions of (t) and \f/ (t).

Representing the initial time by t= 0, we suppose that the four initial values

0(0), ^(0), 0(r)-0(0), ^(r)-^(O) ........................ (2)

are given. Putting t= in (1) we deduce the values of (2r), \{/ (2r) ; again putting
tT we obtain (3r), ^(3r), and so on. Thus by a continual repetition of the

process the values of 0(wr), ^(nr) and therefore of (), ^ (t) can be found.

That the solution of the two equations of motion of the second order leads to

results which contain four arbitrary constants (to be determined by the initial

conditions) is also proved in treatises on differential equations; see Forsyth's

Differential Equations, Art. 173.

244. On general and particular integrals. The Cartesian equations of

motion of a free particle are

x"= X, y" = Y .................................... (1),

where accents denote differential coefficients with regard to the time. These are

usually solved by combining them together so as to obtain a perfect differential.

We then have by integration

F(x, y, x', y', t)
= C ................................. (2),

where C is a constant. When an integral is obtained in this manner there is

nothing to limit the initial conditions. However the particle may be projected the
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equation (2), after determining the proper value of C, must be true throughout the

whole motion. Such an integral is called a general integral. An integral which

is true only for special initial conditions is called a jxirticitlur integral.

245. If any equation such as (2) be arbitrarily written down containing one

arbitrary constant we may enquire irhat the dynamical problem it of which that

notation <x a general integral.

To answer this we differentiate (2) and substitute from (1). We then have

Since the state of motion at any time t may be taken as the arbitrary initial

motion the quantities x, y, x', y' are really arbitrary. The forces A', }' must there-

fore be such as to make (3) an identity.

To determine A", Y we differentiate (3) partially with regard to any of the four

letters x, /, .r', y', treating the others as constants. Supposing that A', Y are

intended to be functions of x, y only, they are constants when we differentiate

partially with regard to a-', y'. In this way we may obtain, by successive differen-

tiations, several equations each containing A', Y in the first degree.

If these equations lead to inconsistent values of A', y we infer that the given

equation cannot be a general integral.

It may also happen that all the equations to find A', }' are identical, and in

this case the forces A", Y are to a certain extent arbitrary. Bertrand has shown

that this can happen only when the integral (2) has the form

(xy'-x'y)*+f^
= C (4).

This therefore, when A', 1" are functions of x, y only, is the only general

integral which can be common to several dynamical problems. Liourille't

1. If x'* + yi- 2/(jr, y) = C be taken as the general integral, prove that

X = dfjdx t Y=dfldy. This is the equation of vis viva.

2. Prove that xy'x'y = C with the upper sign cannot be a general

integral; but, with the lower sign, is a general integral when the resultant force

tends to the origin.

The Principle of Vis Viva.

246. To investigate the principle of vis viva for a system of
les.

Besides the external forces which act on the several particles

we must here take into account th< ir mutual actions and re-

Let 7/1 be the mass of any one particle ; or, y its coordinates
;

let X, F be the components of all the forces which act on that

102
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particle. The equations of motion of that particle are

d-y

Multiplying these by dxjdt and dy/dt respectively and adding the

results, we have

dx d*x dy d*y\ _( dx y dy\- X -
{ *

Summing this for all the particles of the system, we have

dx d?x dy d*y\ _^(x dx y dy\

tdt*)-*(
x

dt*
~

dt)
.......W

The right-hand side of this equation, after multiplication by dt, is

the work done by the forces as the system makes a small dis-

placement, Art. 185.

Amongst the forces X, Y are included the unknown reactions

on the several particles, but it is clear that we may omitfrom the

right-hand side all the reactions which would disappear in the

principle of work in statics.

When the remaining forces are such that the work integral

f?,(Xdx + Ydy) = U+C..................... (4),

where U is a known function of the coordinates of the particles,

these forces are said to form a conservative system. Art. 181.

Representing by v the velocity of the particle m, the integral

of (3) becomes

jSrot^-tf+O ......................... (5).

Let U be the same function of the initial coordinates that U is

of the coordinates at the time t, and let v be the initial value

of v. The equation of vis viva may also be written in the form

|2ravo
2
=tf--Z7o ..................... (6).

247. The principle of vis viva is important for several

reasons.

(1) The principle is of general application. The forces in

nature are such that there is a work function, and the unknown

reactions, in general, disappear from the equation.

(2) When there is only one way in which the system can

move, that motion is determined by the principle.
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(3) The principle gives a relation between the circumstances

"t the motion in any stated position of the system and those at

the initial stage. When the intermediate motion is not required
this is particularly important.

248. The force function. The equation of vis viva can be usefully em-

ployed only when the integrations necessary to obtain the force function (7 can be

effected. It is also important to notice beforehand what forces and reactions may
be omitted in forming that equation.

The acting forces may be classified thus,

(1) the external forces which act on the particles,

C-'i the mutual actions of such of the particles as are rigidly connected

together,

(3) the mutual attractions of independent particles,

(4) the pressures due to any fixed curve or surface on which some of the

particles are constrained to move.

The external forces are in general central forces tending to or from fixed points.

It follows from Art. 186 that, when each force is some function of the distance

from the fixed point, the contribution of each to the work function can be

integrated.

Let R be the mutual action between two particles whose instantaneous distance

apart is r, and let R be measured positively when the action tends to increase r.

It is proved in statics that the work of both the action and reaction is liilr.

It follows from this that the reaction between any two particles which keep an

invariable distance from each other throughout the motion disappears from the

equation of vis viva, for in such a case <lr = 0.

If any two independent particles repel each other with a force R which is a

known function of their distance r, the contribution of this force to the work

function can be integrated.

// ft - are conne.t, ,1 MffOeT // t'ujht >trin
; i. rven if bent by passing

over smooth pulleys, fixed or moveable, the work of the tension is - TM, where /

bi whole length of the string. If the length of the string is invariable the

work is zero. The action of an inextensible string may therefore be omitted in

the equation of vis viva. If the string is extensible and the tension obeys

Hooka's law, the corresponding work can be found by integrating -
T<IL, Me

187.

240. If one of the particles is r< M move on a tmooth fixed cum?

tchotf equation it f(x, y) = 0, let 11 be the normal pressure. The work of R is

/Zoos <f>d* ; this is zero because 0, being the angle between the direction of R and

the arc of the path, is $ir. If however tht runr it ittelf coiutraitud to move, the

angle is not necessarily a right angle and the work may not be zero. Since the

equation of the moving curve will contain t. this is usually expressed by saying

that tli,-
;ir<nn, f thi. if the rtactio**

If th f ,,;; , rough, the friction acts along the tangent to the path,

and the work is zero only when the particle in contact is not in motion.
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250. Energy. Selecting some geometrically possible ar-

rangement of the particles as a standard position, the work done

by the forces as the particles move or are moved from any other

given arrangement to the standard position is called the potential

energy in the given position.

Let the standard position be called S
;
let the system move

from some given initial position A and at the time t let its position

be P. It has already been proved (Arts. 69, 246) that

Kin. En. at P - Kin. En. at A = work A to P.

But Pot. En. at P = work P to S,

Pot. En. at A = work A to S.

/. Kin. En. at P + Pot. En. at P = Kin. En. at A + Pot. En. at A.

It follows therefore that the sum of the kinetic and potential

energies is constant throughout the motion. This sum is called the

energy of the system, and it has just been proved that the energy

of the system is constant and equal to its initial value.

This theorem is true whatever standard position may be

chosen, but it will be found convenient to so choose this position

that the system may finally arrive there. When this choice is

made the potential energy represents the whole work which can

be obtained from the forces as the system moves to its final

position.

251. As a simple example, let a heavy particle fall from rest

at the ceiling of a room to the floor
; the kinetic energy after

falling a distance z is l^niv
2 = mgz. Let us take the floor (i.e.

z = h) as the standard position, because the particle cannot

descend any lower; the potential energy at the depth z is

mg (h z). The whole energy is therefore mgh, which is constant

throughout the motion. At the ceiling the energy is wholly

potential because the particle starts from rest
;
on arriving at the

floor the energy is wholly kinetic, all the available potential

energy having been changed into kinetic energy.

252. Degrees of freedom. If a system contain n particles

free to move in space of two dimensions, its position can only

be defined by the use of the 2?i coordinates of the particles.

There are evidently just 2n different ways in which the particles

can be moved, all other displacements being compounded of these.
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The system is then said to have 2/j degrees of freedom. If some
< >f the particles are constrained to move on * given curves, or

more generally if there are K given relations between the 'In

coordinates, only 2n K coordinates are necessary to fix the

ition of the system and there are then 2n K degrees of

freedom. The degrees of freedom of a system may be defined to be

the number of coordinates required to fix its position.

253. Vis viva of a rigid body. When some or all of the

particles of a system are rigidly connected together a simple and

useful expression for the vis viva can be found. Let (x, y) be

the coordinates of the centre of gravity, <f>
the angle which a

tight line fixed in the body makes with a straight line fixed in

space, and M the mass. The vis viva is then

where M.k? is the constant called the moment of inertia of the

body about the centre of gravity, see Art. 241

To prove this, let x = ./" + f, y = y + 17 be the coordinates of any

I
.a rtick m, then

-"' f ,.

j

= (2m) f

g-j
-r 2 1 2m ,

-

1

^--f
2
jm

f

-g-1
! .

!//if
= as in Art. 240 the middle term is zero. Hence

*Hir*ew-
equation expresses the proposition that the whole vis viva

of a moving system, whether rigid or not, ise^ml (<> thnt f a particle

of mass M moving with the centre of gravity together with the

vis viva of tl- mnti<,,< relative to t/n> mitre of gravity.

To introduce the condition that the system is rigid we change
to polar coordinates by writing

(d& + (AIy - (d*y - (dp? + (fdw-

t'lit </() <lt is im\v tin- sain.- !'..r all the particles Mid

to dfrdt (Art. 240) and that dp/dt is zero, we find
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264. Examples. /;.r. 1. An endless light string of length 21, on which are

threaded beads of masses .17 and m, passes over two small smooth pegs .1 and /.'

in the same horizontal line and at a distance apart a, one bead lying in each of the

festoons into which the string is divided by the pegs. The lighter bead m is raised

to the mid-point of AB and then let go. Show that the beads will just meet if

M + m ^ 8
/ I \

We notice that only two positions of the system are contemplated in the

problem, viz. (1) the initial position in which the bead in lies in AB, and (2) the

position in which the beads are in contact. In both these cases the kinetic energy
is zero. The principle of vis viva asserts that the change of kinetic energy is equal
to the work. It immediately follows that the work done when the system passes
from the first to the second position is zero. Let x be the depth below AB at

which the beads meet. Then omitting the tension, Art. 248, we have

We also have by geometry 4.r2+ a2= P. Eliminating x we obtain the result.

The circumstances of the motion when the beads m, M are at any depths y, 77

below AB may also be deduced from the principle. We have

b(mv* + Mv'*)= mgy + Mg{i,-,J(P-al)} ..................... (1).

Since the sum of lengths joining m and M to A is I, we have the geometrical

equation

v/(a
2 + 2/

2)W(ia2 + >?
2
)
= * .............................. (2).

Differentiating the second equation, we have

_-

Joining this to (1) we have the values of v, v' when y and 97 have any values not

inconsistent with (2).

Ex. 2. A particle of mass m has attached to it two equal weights by means of

strings passing over pulleys in the same horizontal line and is initially at rest half

way between them. Prove that if the distance between the pulleys be 2a, the

velocity of m will be zero when it has fallen through a space .-- _ .

4m - - m2

[Coll. Exam.]

Ex.. 3. Two pails of weights W, w, are suspended at the ends of a rope which

is coiled round the perfectly rough rim of a uniform circular disc of radius a

supported in a vertical plane on a smooth horizontal axis, and the pails can descend

into a well so that when one comes up the other goes down. If the pails be

allowed to move freely under gravity, and, when the heavier has descended a

distance b from rest, a drop of water be thrown off from the highest point of the

rim of the disc, prove that this drop will strike the ground at a horizontal distance

x from the axis of the disc given by

xi
(i W'+W+w) = 4hb (W- w),

where W is the weight of the disc, and h is the vertical distance above the ground

of the highest point of the rim of the disc. [Math. Tripos, 1897.]

The equation of vis viva gives

= 2 (M -m)gb.
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The theory of parabolic motion gives x=rf, and h = \gt-. Putting w = r/a and
A- = \ a-, we obtain the required value of .r.

i. Two small holes A, B are made in a smooth hori/ontal table, the

distance apart being 2a. A particle of mass ,17 rests on the table midway between

A and /'
; ami a particle of mass m hangs beneath the table, suspended from M by

two equal weightless and inextensible strings, passing through the two holes.

The length of each string is a (1 + see a). A blow J is applied to M in a direction

perpendicular to AB; show that if J-->2Mmag tan a, M will oscillate to and fro

through a distance 2a tan a. But if J- is less than this quantity and equal to

'2 MUK i;i (tan a - tan /)), the distance through which .17 oscillates will be

2a { p (p+ 2) }*, where p = sec a - sec /3. [Coll. Ex. 1895.]

The effect of the blow J is to communicate an initial velocity I'JJM to the

mass M, leaving m initially at rest.

F..r. o. Two particles M, m are connected by a string passing over a smooth

pulley, the lesser mass m hangs vertically, and M rests on a plane inclined at an

angle a to the vertical. M starts without initial velocity from the point of the

inclined plane vertically under the pulley. Prove that M will oscillate through a

distance ~"^
*cosa

wfa h
.

fa height of the pulley above the initial
in- - .17 -COS2 a

position of M, m is greater than .17 cos a but less than .17. [Coll. Ex. 1897.]

<>. Two equal particles connected by a string are placed in a circular

tube. In the circumference is a centre of force varying as the inverse distance.

One particle is initially at rest at its greatest distance from the centre of force,

8 that if t>, v' be the velocities with which they pass through a point 90 from

the centre of force, e~*b + e-**l*= l. [Coll. Exam.]

7. A thin spherical shell of mass M is driven out symmetrically by an

nal explosion. Prove that if when the shell has a radius a the outward

ity of each particle be r, the fragments can never be collected by th- ii

mutual attraction unless F*<3f/a. [Coll. Exam.]

The attraction of a thin spherical shell on an element of itself is the same as

if tin if the mass of the shell were collected at the centre.

Three equal and similar particles repelling each other with forces

varying as the distance are connected by equal inextensible strings and are at rest ;

if one string be cut, the subsequent angular velocity of cither of the other strings

will vary as . /\
~ 2

-
CO8

/

*
, e being the angle between them. [Christ's Coll.]v * + cos 9

'.i. An elastic string of mass m and modulus B rests unstretohed in the

form of a circle of radius a. It is now acted on by a repulsive force situated in

its centre whose magnitude is /* (distance)-
9
. Prove that the radius of the circle

it next comes to rest is a root of the quadratic i*-ar=mmKw. [Coll. Exam.]

10. A circular hoop of radius b, without mass, has a heavy particle

rigidly attached to it at a point distant c from its centre, and its inner Hurfaoe is

constrained to roll on the outer surface of a fixed circle of radius a (6 being greater

than a), under the action of a repelling -\ the centre of the fixed circle

equal to n times the distance. Prove that the period of small oeoillariom of the

hoop will be
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Prove that when c = 6, all oscillations large or small have the same period;

and prove further that in the general case the hoop may be started so that it will

continue to roll with uniform angular velocity equal to {/zfo/(6-a)}^.

[Math. Tripos, 1886.]

The following is a simple (but not necessarily the shortest) method of writing

down the equation of vis viva in problems of this kind. Having selected some

independent variable to fix the position of the system, say, the inclination 6 of the

straight line joining the centres C, of the two circles to the vertical, we find the

coordinates x, y of the particle in terms of 6 by projecting OC, CP on the vertical

and horizontal. The vis viva, being the sum of m (dxjdt)- and m (dy/dt)-, follows

immediately. Equating the half of this sum to the force function ^mp. C02 +C'

we have an equation giving d0/dt in terms of 0.

It is then easily seen that, if the constant C be properly chosen, the value of

dB/dt reduces to the constant given in the question. To find the small oscillations,

we differentiate the equation of vis viva and reject the squares of 6.

When c= a, the path of the particle is an epicycloid and the oscillations large

or small are, by Art. 211, tautochronous.

255. Rotating field of force. When a particle moves in

a field of force which rotates round the origin with a uniform

angular velocity n, an integral of the equations of motion can be

found which reduces to that of vis viva when n = 0.

Let Of, Orj be two rectangular axes which rotate with the

field of force, and let X, Y be the component accelerating forces.

We then have by Art. 227

3-*S t-x.df dt

#1 , ^ . r
j+tosj-^.r

Multiplying these by dg/dt and drj/dt and adding, we find

We introduce the condition that the field of force rotates by

making X, Y such functions of f, 77 only that X-dU\d^ and

Y=dU/drj. Then U is a function of f, 77 only and not of t The

equation then becomes

^-wVj-tf+C ....................... (3),

where v is the velocity of the particle relatively to the moving

axes and r is the radius vector.
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\\\- may notice that if U be expressed in terms of the

ordinal! > ./, y referred to fixed axes, the expression will contain t

l>t
when the force is central and tends to 0.

The equation, when written in the form (2), is a slight ex-

tension of that given by Jacobi in the %//>/ </s, Tome in.

].. ">9, 1836.

If V be the space velocity of the particle, A the angular
iiK.rn* ntuni ab>ut referred to a unit of mass, then

V>-'2nA = v>->t*tf ...................... (4).

Thr r.juation of Jacobi then becomes

$V*-nA = U + C........................ (5).

V prove the relation (4), let p be the perpendicular from on

the tangent to the relative path. Since V is the resultant of v

ami in-, (the latter being perpendicular to r), we have

V* = tf + n*r*-2v.np, A=vp +

the second equation being obtained by taking moments about n.

Th- equation (4) follows at once.

An example of a rotating field of force is met with in

astronomy. If the components of a binary star describe ciiv

about their common centre of gravity, the force is always the

-ame at the same point of the rotating plane. Jacobi's integral

will therefore apply to the motion of a satellite moving in that

plane, provided it is of such insignificant mass that the motions of

th primaries are undisturbed by its attraction.

256. When the particle moves in space of two dimensions and the field of

force rotates about a perpendicular axis with a variable angular velocity 0' we may
obtain an extension of the equations.

We know that ^dV^jdt is equal to the sum of the virtual moments of the

forces divided by (it, (Art. 246), hence

But <M/<ff = (}*- i|A' by taking moments about tin- origin, hence

l dv
.
,n .u

(6),

> r in a function of the moving coordinates f , r), g. When *V is constant, Ibis

can be integrated and we obtain the equation (6).

\Vhrn a tyttem of particlfi moving in a given rotating field of force it under

consideration, we have for each an equation similar to (6).' Multiplying these by

nasses of the particles and adding the products, we have an extended equation
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of vis viva. If 22' be the vis viva, A the angular momentum of the system, U the

force function, this equation is

T-<t>'A = U+C (7),

where #' is the angular velocity of the field supposed to be constant. In this form

we may omit from V all the actions and reactions which disappear in the principle

of virtual work.

267. Coriolis' theorem on relative vis viva. A system of particles is

referred to moving axes 0, Oij. Supposing the system at any instant to become

fixed to the moving axes, let us calculate what would then be the effective forces on

the system. If we apply these as additional impressed forces on the system, but

reversed in direction, we may use the equation of vis viva to determine the relative

motion as if the axes were fixed in space.

Let ?!, wi 2 , &c. be the masses of the particles; (Xlt 1'j), (A'2 , F2 ) f
&c. the

components of the impressed forces. Let also p, q be the resolved velocities of the

origin, then, including these as explained in Art. 227, the equations of motion of

any representative particle m are

where u = d<f>ldt.

The left-hand sides of these equations measure the components of the effective

forces on the particle m, Art. 227. The corresponding components on an imaginary

particle of the same mass m attached to the moving axes and momentarily coin-

ciding with the real particle are found by treating , ij as constants. These are

du dp
^dt^dt'I-

These we represent by XQ ,
F for the sake of brevity.

Transposing these terms to the other sides of the equations of motion, we have

(3).

These equations may also be used to supply another proof of the theorem in

Art. 197.

Multiplying these respectively by d^dt, drj/dt and adding, we have, as in Art. 255,

<* ,dr,d?r,) v^./y Y\ dlJm
\dtd^

+
dtd^\

=(x - x
^d't +(Y

-
Yo) Tt'

Summing this representative equation for all the particles and integrating

(4).

If the axes rotate round a fixed origin with a uniform angular velocity, w is

constant and p, q are zero. The equation of Coriolis then takes the simpler form

(5),



ART. 260.] CORIOLIS ON Vis VIVA. 157

where r is the distance of the particle m from the origin and r is its velocity rein-

lively to the axes. For a single particle this is the same as Jacobi's integral.

If the angular velocity w is not uniform and p, q not zero, the system of

additional forces (A' ,
}'

)
is not conservative and the integration in (4) cannot be

effected except in special cases. The equation is however still important, for the

first step in the integration of the equations (1) must he to eliminate the unknown

reactions, if any such exist. Now the equation (4) is free from all the reactions

\\liirh would disappear in the principle of vertical work, and that equation therefore

supplies us at once with one result at least of the elimination.

For the purposes of this proposition the forces measured by A' , }' are called

the force* of moving $pace. When the origin of coordinates is fixed, these take the

simple form

A' = ->*-*, Y9
=

This theorem is due to Coriolis ; see the Journal Polytechnique, 183 1.

258. Lalsant's theorem. ]..> . A particle moves under the action of a force

whose Cartesian components are A'=rn -
-, Y=vn

-

, where r is the velocity.

Prove that the equation of vis viva is r--= (2
-
n) U + C.

See the Bulletin de la Societg Mathi'muti'im; 1893, vol. xxi.

Moments and Resolutions.

259. The equation of Moments. It 1\ Q are the com-

ponents of the force on a single particle resolved along and

transverse to the radius vector, it is clear that Qr is equal to

the moment of the forces about the origin. Representing this

moment by M, the transverse polar equation of motion b <! M->

260. When a system of mutually attract,',,,/ i>.irf,'c/es moves

the action of external forces we have by adding together

the transverse polar equations of each pai -ti. !

d ( .d6\ v . ,, /0 .

;:?

It /; be the attract inn ,f ///, ..n //^, the reaction of ;/i* on m, is

72, and the sum of tin- mom* nt- <>t these two must disappear
1Y MM the right-hand side*. If thru the external forces are such

that their resultant passes thn.u^h the origin, we have U/ = 0,

and thrn-f..iv by integration

''''-// ...
lit
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where IT is a constant. This equation expresses the proposition
that when a system of mutually attracting particles moves under

the action of external forces such that the sum of the moment*

about a fixed point is zero, the sum of the angular momenta of all

the particles about that point is constant. For example, if any
number of mutually attracting planets move under the influence

of a fixed sun, the sum of their angular momenta is constant.

See also Art. 93.

Since xdy ydx = rad6 (Art. 7), the equation (3) of moments
when written in Cartesian coordinates takes the form

261. Rigid system. When a system of particles is rigid it

is useful to have an expression for the resultant angular mo-

mentum about the origin. Let (xy y) be the coordinates of the

centre of gravity, <j>
the angle a straight line fixed in the body

makes with a straight line fixed in space, and M the mass. The

angular momentum of the whole mass is then

dt>

where Mk2 is the moment of inertia about the centre of gravity.

See Art. 241.

To prove this, let (x, y) be the coordinates of the particle m t

then # = # + , y = y + ri. Remembering that 2raf=0, Sm?; =
as in Art. 239, we find by substitution that

dy dx\ ^ ^f-dy -.dx

Since dx/dt, dy/dt are the components of the velocity of the

centre of gravity, the first term is the moment of the velocity

of a particle of mass M placed at the centre of gravity and

moving with it. The equation therefore asserts that the angular
momentum about any point is equal to that of the whole mass

collected at the centre of gravity together with the angular mo-

mentum round the centre of gravity of the relative motion.

To introduce the condition that the system is rigid we change
to polar coordinates by writing ^drj rjdl;

=
pi

2dd. The second
7/1

term then becomes Xrn/j
3 -v- . Remembering that d0/dt is the
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-ame for every particle and equal to cty/dt (Art. 240), this term

becomes Mk-
,

.

at

It follows that, when a rigid body is acted on by any forces

whose moment about the origin is G, the equation of moments is

262. Kx. 1. A particle moves in a field of force defined by the force function

Show how to find the coordinates r, 6 in terms of the time.

The force transverse to the radius vector is Q= dU/rd0. The equation of

moments therefore becomes ( r3

^- J
=

-5
-
, . Multiplying by r*d0/dt, the inte-

gration can be effected and we find

where A is an arbitrary constant. This integral is equivalent to a result given by
both Jacobi and Bertrand.

The equation of vis viva is

Sf-*"^* .......................

Eliminating d6jdt by the help of (1) we arrive at an equation giving dt,'dr as a

function of r. The determination of t in terms of r has thus been reduced to an

integration. The relation between and t may then be found from (1) by another

integration.

2. A particle is placed at rest at the point x=0, r=a in a field defined by

V=m a~
. Show by writing down the equations of vis viva and moments that the

path is a circle.

263. The equation of resolution. If a system of part i<l>

moves under the action of external forces, we have by resolving

parallel to the axis of *, (Art. 236),

-"' j**
= ~'" -\'

a/-

where X is the typical accelerating force on the particle m. In

this equation we may omit th< mutual attractions of the particles,

t''-r the action and reaction being equal and opposite, these dis-

appear in the resolution.

If any direction fixed in space exist such that the sum of the

components of th< nn]>iv^, <l t'-ro-s in that direction is zero, we
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can take the axis of x parallel to that direction. We then have

! niX = 0, .' . 2w ,=A,

where A is a constant. This result is the same as that already
arrived at, and more fully stated, in Art. 92.

264. Summary of methods of integration. When the

system of particles moves in a given field of force the equation
of vis viva in general supplies one integral of the equations of

motion. If the system has only one degree of freedom, this

integral is sufficient to determine the motion.

When another integral is required, there is no general method

of proceeding. We usually search if there is any direction fixed

in space in which the sum of the resolved parts of the forces is

zero, or any fixed point about which the sum of the moments is

zero. In either of these cases an additional integral is supplied

by the methods of Arts. 263 and 260. The first case usually

occurs when the acting force is gravity, the second when the

force is central.

When these methods fail we have recourse to some artifice

suited to the problem. Suppose that we have some reason for

believing that a particle describes a certain path, we constrain

the particle by a smooth curve. If the pressure can be made

zero by the proper initial conditions, the constraint may be

removed and the particle will describe the path freely, Art. 193.

265. Examples. Ex. 1. Two particles, of masses ///, M, placed on a smooth

table, are connected by a string of length a + b, which passes through a fine ring

fixed at a point O on the table. The particles are projected with velocities U and

I

'

perpendicularly to the portions of the string attached to them, and the initial

lengths are respectively a and I. Find the motion.

Let (r, 6), (p, 0) be the polar coordinates of m and M at the time t. By the

principles of angular momentum and vis viva, we have

We have also the geometrical equation

r+ p a + l) ....................................... (3).

Eliminating p, 6, <j>,
we find
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In this differential equation, the variables can be separated and thus t can be

rxprcssrd in terms of r by an integral. The integration cannot be generally
effected.

If the system oscillate, the extreme positions are determined by putting dr,'dt = Q.

We thus have

Since the left-hand side is positive when r = and r=a + b and vanishes when
/ =a there is a second positive root less than a + b. This second root may be

Droved to be greater or less than a according as mf/2
/a is greater or less than

MT-ib. Tin -e values of r determine the extreme positions of the system. We
that if V be very small, the second root is very nearly equal to a+ 6.

It r=0 the particle M arrives at the origin, but the appearance when r=a+ 6

<>f the singular form 0/0 in the equation (5) is a warning that the motion changes
it- character in this case. In fact if the third term on the left-hand side of (4) is

removed, the velocity of arrival at is finite instead of being infinitely great.

To find the tension T of the string, we use the radial equation of motion for

one of the particles. This gives

cPr d$\* T

rentiating (4) we find drjdt in terms of r and after some slight reductions

Mm
V

therefore does not become slack.

'. Two particles whose masses are in the ratio 1 : 2 lie on a smooth

horizontal table, and are connected by a string that passes through a small ring in

ible: the string is stretched and the particles are equidistant from the ring:

the lighter particle is then projected at right angles to its portion of the string.

. <> that the other particle will strike the ring with half the initial velocity of

the first par: [Coll. Ex. 1896.]

:t. One A of two particles of equal mass, without weight, and connected

lustic string moves in a straight groove. The other B is projected parallel

to the groove, the string being stretched. Prove that the greatest tension is four

in least [Coll. Ex.]

Iledaoe A to rest, then It is acted on by T and T cos 6, the latter being parallel

be groove, where 6 is the angle AB makes with the groove. The particle B now

describes a circle, and the normal and tangential resolutions give the angular

hich

the hole, m is projected horizontally and pflrpfcmUfrcilarlj to the string wi

i trom i ]::; on the table distant a from the hole. Prove that if M j

6)
1

. Prove also that if Af oscillates,

Wl,:u is th.- im.iiMM if mF'-
R. I). 1 1
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Ex. 5. Two small spheres of masses m and 2m are fixed at the ends of a

weightless rigid rod AB which is free to turn about its middle point 0; the heavier

sphere rests on a horizontal table, the rod making an angle 30 with it. If a sphere
of mass m falling vertically with velocity u strike the lighter sphere directly, prove
that the impulse which the heavier sphere ultimately gives to the table is

lmu(I + e), where c is the coefficient of restitution between the two spheres, the

table being perfectly inelastic. [Coll. Ex. 1893.]

At the first impact we take moments for the two particles in, 2m about to

avoid the reaction at 0. We therefore have 3mv'a=Ha cos a, 7/1 (u'
-
u) = - R where

a= 30. At the moment of greatest compression the velocity of approach of the

centres is zero, /. w' = v'cosa, and R = % mu. Since the complete value of J? is

found by multiplying this by 1 + e, the velocity of either end of the rod after impact
is ^ucosa(l + e). The balls m and 2m rotate with the rod round through some

angle, and 2m finally hits the table with a velocity v'. Taking the same equation

of moments as before R'a cos a= 3mv', .-. R' = | mu (I + e).

Ex. 6. One end of a string of length I is attached to a small ring of mass in

which can slide freely on a smooth horizontal wire, and the other end supports H

heavy particle of mass m'. If this particle be held displaced in the vertical plane

containing the groove, the string being straight and then let go, prove that the

path of m' is part of an ellipse whose semi-axes are I, lm!(m + m'), the major axis

being vertical. [Coll. Ex. 1896.]

Only the horizontal resolution and the geometrical equation are required.

Ex. 7. A rectangular block of wood of mass M is free to slide between two

smooth horizontal planes, and in it is inserted a smooth tube in the shape of a

quadrant of a circle of radius a, one of the bounding radii lying along the lower

plane, and the other being vertical. A particle of mass m is shot into the tube

horizontally with velocity F, rebounds from the lower plane, and leaves the tube

again with a relative velocity V, prove that

V- = e*V2 - 2ga (1
- e2

) (M + m)/M,

where e is the coefficient of restitution for the lower plane. [Coll. Ex. 1895.]

Ex. 8. If in the case of three equal particles the units are so chosen that the

energy integral is (vx
2 + t>2

2 + v3
2
)
=--

1

---
I- , where r12 is the distance

r23 r
l

r!2 ''

between the particles whose velocities are v
l
and t?2 , and if r is a positive constant,

the greatest possible value of the angular momentum of the system about its

centre of inertia is %<J(2r). [Math. Tripos, 1893.]

Ex. 9. Two equal particles are initially at rest in two smooth tubes at right

angles to each other. Prove that whatever be their positions and whatever their

law of attraction, they will reach the intersection of the tubes together.

[Coll. Ex.]

Ex. 10. Three mutually attracting particles, of masses ml1 w2 , m3 , are placed at

rest within three fixed smooth tubes Ox, Oy, Oz at right angles to each other. The

attraction between any two, say mlt m.2 ,
is /Awi ]

rt2r.j'

c where r3 is the distance. If

the triangle joining the particles always remains similar to its initial form, prove

that the initial distances satisfy the equations
~ ~ '"

in.
2 + m3
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266. Double answers. />. A cube, of mass J7, constrained to slide on

a smooth horizontal table, has a fine tube ACB cut through it in the vertical plane

through its centre of gravity, the extremities A, B being on the same horizontal

line and the tangents at A t
B horizontal. A particle, of mass w, is projected into

the tube at A with velocity I", deduce analytically from the equations of linear

momentum and vis viva that the velocity of emergence at B is also V.

Let M, r be the velocities of the cube and particle at emergence. The principles

referred to give
Mu- M>sr,

These give two solutions, viz. (1) u=0, r=F, and (2) i< = 2wr/S, v = (m- M) F/.S,

where S =m + M. To interpret these we notice that there are two sets of initial

conditions which give the same linear momentum and vis viva. These are

determined by the values of u, v just written down. We have therefore really

1 two problems and have thus obtained two results.

To distinguish the solutions, we investigate the intermediate motion. Let P lx-

point in the tube and let p be the tangent of the angle the tangent makes with

!) horizon. If u, r now represent the horizontal velocities at P, the same two

principles give

Mu t inr a ml', Mu* + m (v

where .r'.- < u is the relative velocity. These give

Now c= I' initially when p = 0, hence the radical must have the positive sign and

must keep that sign until it vanishes. On emergence therefore, when p is again

zero, r- r. The negative sign of the radical evidently gives the initial conditions

of the other problem.

267. Bodies without mass. /-.. . 1. A heavy bead is free to slide along H

rod whose ends move without friction on a horizontal circle ; prove that when

the mass of the rod is negligible compared with that of the bead, the bead will,

when started, continue to slide along the rod with an acceleration varying inversely

as the cube of its distance from the middle point. [Math. Tripos, 1887.]

The reaction between the rod and the particle is zero because the rod has no

mass. To prove this, let R be the reaction. M the mass of the rod, then, taking

moments about the centre O of the circle, we have M&lttjdt = Rp, where is tin-

angular velocity of the rod. Hence 72 = when .17 = 0.

i 'article 7', being not acted on by any horizontal force, describes a straight

in space with uniform velocity 1. If .r be the distance of P from the middle

C of the rod ; a, r, the perpendicular* from O on the path and on the n>i

This gives ePx/rft'= 6 (a
-
<*)/*.

_'. A rigid wire without mass is formed into an arc of an equiangular ipinl

carries a heavy particle fixed in the pole. If the convexity of the wire b<>

placed in contact with a perfectly rough horizontal plane prove that the point

of contact will move with a uniform acceleration equal to ycota, where i

angle of the spiral. [Math. Tripos, I860.)

112
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268. Equation of the path. Let P, Q be the resolved accelerating forces

acting on the particle respectively along and perpendicular to the radius vector.

Let P be regarded as positive when acting toward* the origin. The equations of

motion are

1 d

r*f^)- d).

To find the path we eliminate t. The second equation, after multiplication by

and integration, as in Art. 262, becomes

(2).

For the sake of brevity we represent the right-hand side by H 2
. Putting also

u - 1/r, we find deidt =Huz
. We then have

dr_ 1 du dd_ ffdu
dt
=
~u*d0df~ <W'

Substituting in the first equation of motion

Replacing H2
by its value given in (2),

Q du P

This is Laplace's differential equation of the path of the particle. The forces

P, Q being given in terms of the coordinates M, 0, of the moving particle, this

equation, when solved, will determine u as a function of 6, and thus lead to the

equation of the path. To find the motion along the path we use equation (2).

Substituting in that equation the value of u in terms of 6 we find by integration the

time t at which the particle occupies any given position.

The polar differential equation of the path cannot be integrated except for

special forms of the forces P, Q. If Q= 0, the equation takes the form

This can be integrated when P is a function of u alone, a case which is considered

in the chapter on central forces. It can also be integrated when P=u?F(6), the

method of solution being that shown in Art. 122.

When P=M3
F(0) the equation is linear. If one solution of the differential

equation is known, say u=
<f> (6), the general integral may be determined by substi-

tuting u= z<f> (0). After integration we find z = A+Bj[<j> (0)]~
2 de.

269. When P=u8
F(6), Q= u3

/'(0), the differential equation of the path takes

the linear form

(5).

The various cases in which this equation can be integrated are enumerated

in treatises on Differential Equations.
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By multiplying the equation by the proper factor we can make the left-hand

side a perfect differential. Conversely choosing any factor, we can nnd the relation

between P and Q that this may be the proper integrating factor. If we wiah

the relation between P, Q to be independent of the initial condition*, the terms

containing h- as a factor must be made a perfect differential independently of the

d*u
remaining terms. The coefficient of /r & ra+ and this is made a perfect

differential by either of the factors sin0 or cos 0. The remaining terms must

therefore also become a perfect differential by the same factor. The condition that

L ~ + M {

-'- T Xu is a perfect differential is X- -^- + -j^=0, and the integral is
" "

to b.L

Multiplying equation (5) by sin 0, the product is a perfect differential if

which reduces at once to = + 3cot0 .............. ....... (6).

The integral, since /'(0)= Q/u
3

,
becomes

C ............... (7),

where C is a constant. This is a linear equation of the first order and can be

integrated a second time when Q/u
3 is given as a function of 6. Thf determination

of the path can therefore be reduced to integration when the relation (6) i* tatisfied.

In the same way, if we multiply (5) by cos 0, we find that the product in

a perfect differential if -. = -^ ?,
- 3 tan 6 ^.

it
3 d9 uj a"

and the integral is ( h- + 2 fe dB\( cos
^*

+ sin
0w)

-
^ cos $u = C' ...... (9).

which is linear and can be integrated a second time.

her case in which the integration of (3) can be effected may be deduced

from Art. 262. The equation (3) is

If then = / + 2 I &, the integral is

i

270. /-... 1. It I'-^uF(0) and g = Ptan0, prove that u = Aiin6 it a par-

ticular solution of the linear equation (5). Thence obtain the general integral

by putting u=;sin0, where * is a function of 9 which is determined by solving

a linear equation of the first order.

\ parti .. BOW nii.ii-i tn. fan

P=Mu'(8 + 6<"2*),
hat an integral of its motion is

i (sint? -sin 30) + cos ^
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Obtain also a similar integral if

.
f 3tan/<0|

P=IM* cos n0 -{11 + v
, Q= (j.u-> sm 116.

tan v \

[Coll. Exam. 1892.]

E.r. 3. If the Cartesian accelerating forces A', Y are unrestricted, prove that

the differential equation of the path is

,

where ,4 is a constant depending on the initial conditions.

Prove also that the determination of y as a function of x can be reduced to

integration when both A', 1' are functions of x only.

E.r. 4. If X and Y/y are functions of x only, the differential equation of the

path is linear. Prove that it can be integrated when Yy -T-, and that the first

integral is (A + 2 JXdx) ^-Xy=C.
v /iy Qy

Prove also that when = H-- , the differential equation can be integrated

and that the first integral is

(A + 2 JXdx) tf^|
-
(A + 2 jXdx+ xX) y = G.

Ex. 5. Prove that the Cartesian equations of motion can be completely

integrated when the force function satisfies

d?U_d?U_ cPU

dx* ~df~*dxdy'
To prove this we notice that U= (y + ax) + \f/ (y + a'x),

where o, a! are the roots of a2 -- /ta= l. We then change the variables to =
// + ax

and T)=y + a'x. The new coordinates , 97 are also rectangular. The equations

of motion become d2
/dt

2
=<'(), drrjldt

2
=\f/' (77), which may be solved as in

Art. 122.

Ex. 6. If the direction of the acting force is always a tangent to the direction

of motion, as in the case of a resisting medium, prove that the path is a straight

line. Consider the resolution along the normal.

E.r. 1. If tho direction of the force is always perpendicular to the path, prove
that the velocity is constant.

Superposition of Motions.

271. A particle is constrained to describe a fixed curve. When

projected from a point A with a velocity u^ under the action of

any forces the velocity and pressure at any point P are v l and JRj.

When projected with a velocity uz from the same point A under

a second system of forces the velocity and pressure at P are va



AUT. '274.J DIFFKKKM HUTTIOirfi >AMK I'ATH. 167

and /,. When the particle is projected from A with a velocity
a such that u* = u l

* + uj, and moves under the action of both

;cms of forces, the velocity and pressure at P are v and R.

1 1 is required to prove that

To prove this we write down the two equations for each of

the three types of motion. Representing for the sake of brevity
the normal components of accelerating force by Nlt Nt ,

Nt + N9 ,

we have

-
Ml

2 = 2 !(X,dx + Y,dy) t vf/p = N, + RJrn,

-z<2

th<- limits of integration being always from the point A to P.

The results follow at once by subtracting from the third

i

M| nation the sum of the other two.

272. The following corollary will be found useful.

A particle can describe a curve freely under the action of

ain forces, the velocity at some point A being w,. If the

I
(article is now constrained to describe the same curve the velocity

at A being changed to M,, then the pressure at any point P i-

where p is the radius of curvature at P, and C is tin

int m (uf w,
f
).

To prove this we notice that when the velocity at A is M, and

the forces act on the particle, the pressure is Rl
= 0. If the

city at A were u' and no forces acted on the particle, the

pressure at P would be mu'*/p. Superimposing these two states

ami putting u'* = H8
s

u,*, the throivm follows at once.

278. We may also deduce the following theorem due to Ouian Bonnet. If a

particle can freely describe the same carve under two different tyitenu of forces,

the velocities At some point A being respectively u, and u,, then the particle can

describe the same path under both systems of forces provided the velocity at A is ,

where u'= u^ + u,. Since any point may be taken as the point of projection this

r.liti.n brtffMD tho velocities holds at all points of the curve. Li<mvilU'i

Journal, Tome ix. page 113.

274. The following example of Ossian Bonnet's theorem is important It

will be shown in the chapter on central forces that a particle P will describe MI

-llipe freely about a centre of force in one focus //,. whose law of attraction is
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Mi/ri~ provided the velocity of projection at any point A is given by

The same ellipse can also be described about a centre of force in the other focus

Hz whose law of attraction is fj^jr<? provided the velocity v2 has the corresponding
value. It immediately follows that the particle can describe the ellipse freely about

both centres of force acting simultaneously, provided (1) the velocity v at any point
A is given by

/2 1\ /2 1\

*^fe :=)**(*")
and (2) the direction of projection at A bisects externally the angle between tin

focal distances.

According to this mode of proof both the centres of force should be attractive,

for it is evident that an ellipse could not be freely described about a single centre

of repulsive force situated in either focus. But the law of continuity shows that

this limitation is unnecessary. Supposing ^ and ju2 to have arbitrary positive

values, it has been proved that the equations of motion of a particle moving freely

under both centres of force become satisfied when this value of vz is substituted in

them. The equations contain only the first powers of ^ and j^ (see Art. 271) and

can be satisfied only by the vanishing of the coefficients of these quantities. They
will therefore still be satisfied if we change the signs of either ^ or /-u, .

In the same way we may introduce other changes into the theorem, provided

always we can obtain a dynamical interpretation of the result.

275. Ex. 1. Prove that a particle can describe an ellipse freely under the

action of three centres of force
;
one in each focus attracting as the inverse square

and the third in the centre attracting as the direct distance. Find also the velocity

of projection.

Ex. 2. Particles of masses w,, wt2 , &c. projected from the same point in the

same direction with velocities MJ, M2 ,
&c. under the action of given forces Flt F.

2 ,

&c. describe the same curve. Show that a particle of mass M projected in the

same direction with a velocity V under the simultaneous action of all the forces

Flt Fz , &c. will also describe the same curve, provided

Ossian Bonnet, Note iv. to Lagrange's Mecanique.

Ex. 3. A bead is projected along a smooth elliptical wire under the action of

two centres of force, one in each focus, and attracting inversely as the square of

the distance. If TP, TQ be any two tangents to the ellipse, prove that the pressure

when the bead is at P : pressure when the bead is at Q : : TQ3
: TP3

.

Initial Tensions and radii of Curvature.

276. Particles, of given masses, are connected together by in-

elastic rods or strings of given lengths and are projected in any

given manner consistent with these constraints. It is required to

find the initial values of the tensions and the radii of curvatures of

the paths.
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The peculiarity of the problems on initial motion is that the

velocities and directions of motion of all the particles are known.

It will thus not be necessary to integrate the differential equations
of motion, for the results of these integrations are given.

Supposing that there are n particles, we shall require besides

the 2n equations of motion a geometrical equation corresponding
to each reaction.

To show how the geometrical equations may be formed, let

us suppose that two particles mlt raa are connected by a rod or

-t might string of length I. The component velocities of the

two particles in the direction of the string being necessarily equal.

their relative velocity is the difference of their component velocities

perpendicular to the rod; let these be Pi, P2 . If
</>

be the angle

the rod makes with some fixed straight line, the geometrical

equation is I - = F2 P,.

The simplest method of obtaining the relative equations of

motion is perhaps to reduce m l to rest. To effect this we apply to

both particles (l)an acceleration equal and opposite to that of TN,,

and (2) an initial velocity equal and opposite to that of w,. The

path of m^ being now a circle whose centre is at ml and whose

radius is /, the relative accelerations are those for a circular

motion. (Art. 39.)

Let Xlt X9 be the components along the rod of junction of all

th< forces and tensions which act on m,, m? respectively.
\\

then have (Art

Z, Z,
dt~ "

In thU way we may form as many equations as there are re-

actions. By solving these tin initial \.-ilu. -s <>f tin- reactions become

known,

be angular accelerations of the rods are also required, N t

ra be the component forces perjx-mli.-iiliir to the rod whi-h

n m,, m.. Tlu-n

277. / r curvature* of the paths, w* refer to the <-,

tions of motion in space. Tl
ity and direction <t m..ti. >;
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each particle being known, we may conveniently use the tan-

gential and normal resolutions. We thus have 2n equations of

the form

m-N, m% = T (3),
p at

where N, T are linear functions of the forces and tensions which

act on the particle ra.

These reactions having been found by considering the relative

motion, we substitute in (3). The first of these determines the

radius of curvature p of the path of m, and the second the tan-

gential acceleration, if that be required.

When any one of the particles is constrained to describe a given

carve, the initial pressure of that curve is one of the unknown

reactions. This pressure will be determined by the normal resolu-

tion of (3) since the radius of curvature of the path is the same

as that of the constraining curve.

278. If some or all the particles startfrom rest, the equations
of relative motion are simplified, for we then have

<f>
where the

accent denotes d/dt. Since however the direction of motion of a

free particle at rest is not given, the tangential and normal resolu-

tions are then inappropriate. We can however use the Cartesian

or polar resolutions in space. Since & = 0, the polar resolutions

reduce to r" and r6" which are very simple forms. We must

however bear in mind that if we require to differentiate the

equations of motion this simplification must not be introduced

until all the differentiations have been effected, Art. 281. We
may also use Lagrange's equations, when the curvatures and not

the tensions are required. These modifications of the general

method are more especially useful in Rigid Dynamics and are

discussed in the first volume of the author's treatise on that

subject.

279. Examples. Ex. 1. Particles are attached to a string at unequal

distances, and placed in the form of an unclosed polygon on a smooth table. The

particles are then set in motion without impacts and are acted on by any forces. It

is required to find the initial tensions and curvatures.

Let ABCD <fec. be any consecutive particles, and let the tensions of AB, BC, &c.

be Tj, T2 , <fec. Let the given forces be F
l , I<\2 , &c. and let them act in directions

making angles a, p, &c. with AB, BC, &c. Let l^Jdt, l^d^dt, &G. stand for

the known difference of the velocities of the consecutive particles resolved perpen-

dicular to the rod or string joining them.



ART. 27!).] nCAMPUHi 171

The particle B being reduced to rest, C is acted on by TJ/WI, along CD,

along CIt, T.Jm along CB, Tyro., parallel to 4 ft. Besides these there are the

impressed accelerating forces FJm.A and - F]m. Since C describes a <

relatively to B, we have for the particle C

-3

where A, B, C, &c. are the internal angles of the polygon. The second resolution

may be omitted if the angular accelerations of the several portions of string are

not required.

An equation, corresponding to the first of these, can be written down for each

of the n particles, beginning at either end, except the last. We thus form (n
-

1)

equations to find the (n
-

1) tensions.

To find the initial radius of curvature of the path in space of any particle C
we resolve along the normal to the path. Let the directions of motion of the

particles be AA' t BB' t &c. and let v, , v2 , Ac. be the velocities of the particles. 1

^*= T, sin DCC* + ra sin BCC' - F3 sin (DCC' -
y).

Pt

If the particle ;/., is initially at rest, r3 = and the last equation fails to deter-

mine PJ. The initial tensions may still be deduced from the first equation.
initial direction of motion of the particle coincides with the direction of the

resultant force and is therefore known when the initial tensions have been found.

tangential acceleration is also known for the same reason. The determination

radius of curvature requires further consideration.

1

Heavy particles, whose manses beginning at the lowest are i,, m,, Ac.,

are placed with their connecting strings on a smooth curve in a vertical plane.

Find the initial tensions.

In this problem the arc between any two particles remains constant, so that

the tangential accelerations of all the strings are equal. Let this common accelera-

tion be/. Taking all the particles as one system, the tensions do not appear in the

resulting equation, we have therefore

(m, + M,+ Ac. )/= -
,0 sin f,

- mj sin ff
- Ac.,

where ^,, f,. Ac. are the angles the tangents at the particles make with the

horizon.

Considering the lowest particle, we have
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Considering the two lowest,

(TO! + w2)/= -
i0 sin ^j

-
/._,//

sin ^ + T8 ,

and so on. Thus all the tensions Tlt 7'._,,
&c. have been found.

If any tension is negative, that string immediately becomes slack. We also

notice that the initial tensions are independent of the velocities of the particles.

To find the initial reactions, we use the normal resolutions. If v be the initial

velocity of the particle w, we thus find
Ml

- = - mg cos \b + R.

^ P

Ex. 3. Three equal particles are connected by a string of length a + b so that

one of them is at distances a, b from the other two. This one is held fixed and
the others are describing circles about it with the same angular velocity so that the

string is straight. Prove that if the particle that was held fixed is set free the

tensions in the two parts of the string are altered in the ratios 2a + b : 3a and
26 + a :3b. [Coll. Ex. 1897.]

Ex. 4. Three equal particles tied together by three equal threads are rotating

about their centre of gravity. Prove that if one of the threads break, the curva-

tures of the paths instantaneously become 3/5, 6/5, 3/5ths respectively, of their

former common value. [Coll. Ex. 1892.]

Ex. 5. Two particles are fastened at two adjacent points of a closed loop of

string without weight which hangs in equilibrium over two smooth horizontal

parallel rails. Prove that when the short piece of string between the particles is

cut the product of the tensions before and after the cutting is equal to the product
of the weights of the particles. [Coll. Ex. 1896.]

Ex. 6. Two particles of equal weight are connected by a string of length I

which becomes straight just when it is vertical. Immediately before this instant

the upper particle is moving horizontally with velocity Jgl, and the lower is

moving vertically downwards with the same velocity. Prove that the radius of

curvature of the curve which the upper particle begins to describe is fy iJ5L
[Coll. Ex. 1897.]

Just after the impulse the upper particle begins to move in a direction inclined

tan"1
1/2 to the horizon.

Ex. 7. Two equal particles A, B, are connected by a string of length I, the

middle point C of which is held at rest on a smooth horizontal table. The particles

describe the same circle on the table with the same velocity in the same direction,

and the angle ACE is right. The point C being released, prove that the radii of

curvature of their paths just after the string becomes tight are 5^57/4 and infinity.

/-'./. 8. Four small smooth rings of equal mass are attached at equal intervals

to a string, and rest on a smooth circular wire whose plane is vertical and whose

radius is equal to one-third of the length of the string, so that the string joining

the two uppermost is horizontal, and the line joining the other two is the horizontal

diameter. If the string is cut between one of the extreme particles and the nearer

of the middle ones, prove that the tension in the horizontal part of the string is

immediately diminished in the ratio 9 : 5. [Coll. Ex. 1895.]

Ex. 9. Six equal rings are attached at equal intervals to points of a uniform

weightless string, and the extreme rings are free to slide on a smooth horizontal

rod. If the extreme rings are initially held so that the parts of the string
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attached to them make angles a with the vertical, and then let go, the tension in

the horizontal part of the string will be instantaneously diminished in the ratio of

eos2 a to 1 + sin3 a. [Coll. Ex. 1889.]

10. Three particles .-1. /?, C are in a straight line attached to points on a

string and are moving in a plane with equal velocities at right angles to this line,

their masses being m, m', in respectively. If B come in contact with a perfectly
elastic fixed obstacle, prove that the initial radius of curvature of the paths which
.-1 and C begin to describe is i a , where .1 Il =BC = a. [Coll. Ex. 1892.]

The particle B rebounds with velocity r. By considering the relative motion of

A and B we have 4t?2/a=T/m. By considering the space nfotion of A, v*//>=T/m.

l-..r. 11. A tight string without mass passes through two smooth rings A, B,

on a horizontal table. Particles of masses p, q respectively are attached to the

ends and a particle of mass m to a point O between A and B. If m be projected

horizontally perpendicularly to the string, the initial radius of curvature
/>
of its

p;ith is given by (m+p + q)lp=pla-qlb, where OA =a, OB = b. [Coll. Ex. 1898.]

I'jr. 12. A circular wire of mass M is held at rest in a vertical plane, on a

smooth horizontal table, a smooth ring of mass m being supported on it by a string

which passes round the wire to its highest point and from there horizontally to a

fixed point to which it is attached. If the wire be set free, show that the

of the ring on it is immediately diminished by amount
n~- '

. where 9 is

nfjular distance of the ring from the highest point of tin- \

[Coll. Ex. 1897.]

13. Two particles P, P' of masses m, m' respectively are attached to the

ends of a string passing over a pulley A and are held respectively on two inclined

planes each of angle a placed back to back with their highest edge vertically

the pullry. If each string makes an angle ft with the plane, prove that the

heavier particle will at once pull the other off the plane if

w'/ro < 2 tan a tan /3
1 . [Coll. Ex. 1896.]

I t . Two particles of masses m, M are attached at the points ft, C of a

string AliC, the end A being fixed. The two portions AB, BC rest on a smooth

Mtal table, the angle at B being a. The particle M has a velocity communi

cated to it in a direction perpendicular to BC. Prove that if the strings remain

tight, the initial radius of curvature of the locus of M is a(l+RBin
s
a), where

=3f/m and BC=a. [Coll. Ex. 1896.]

280. To find the initinl /-,/<////* of curvature when tlte particle

Marts from rest. In this pr..llriM it may be necessary to use

litV. n ntial coefficients of a higher order than the second. Let

x
t y be the Cartesian coordinates of a particle, then represent iiu:

rential c- - wit h regard to the time by accents

"
-y

\\hirh takes a singular form when th- mponent velocities J?', y'
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are zero. Putting u = ./?/" y'x" y
we have after differentiation

For the sake of brevity let the initial value of any quantity be

denoted by the suffix zero, thus # "
represents the initial value

of x". Using Taylor's theorem and remembering that # ' = 0,

y
' = 0, we have

Similarly (x- + y'
2

)
1 = (x^ + 7/

"2
)
f ^ + &c.

If the particle start from rest the initial radius of curvature

is therefore zero. But if the circumstances of the problem are

such that Xs'y"' Wo" = 0, the radius of curvature is given by

This is the general formula when the axes of a?, y have any

positions.

If the axis of y be taken in the direction of the resultant

force #
" = 0, and if we then also have # '" = 0, the expression for

the radius of curvature takes the simple form

>-$
If F be the initial resultant force on the particle, X the trans-

verse force, the formula when X 0, 'Xn

' = may be written

The corresponding formula for p in polar coordinates may be

obtained in the same way. We have when r(r"6"'-r"'6") = Q

initially,

Q (~&Q"2 i r"'A$ " "" " iv

P

where the letters are supposed to have their initial values. If the

initial value of r" = 0, this takes the simpler form
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281. Let n particles Plt P,, &c. at rest, be acted on by given
forces and be connected by K geometrical relations. To find tin-

initial radius of curvature of the path of any one particle 7'

proceed in the following manner, though in special cases a simpler

/trocess may be used. We differentiate the dynamical equation-
:\vi<v and reduce each to its initial form by writing for all tin-

coordinates (xlt y,), (#2, ys), &c. their initial values, and for

. y,'), &c. zero. We differentiate the geometrical equation-
four times and reduce each to its initial form. We then 1.

sufficient equations to find the initial values of x", x'", a^
r
, &c.,

/.'. R'. R", &c. where R is any reaction. Lastly solving these for

tin* coordinates of the particular particle under consideration we
-ulxiitute in the standard formula for p.

This process may sometimes be shortened by eliminating tin-

isions (if these are not required) before differentiation. \\

thus avoid introducing their differential coefficients into tin-

work

282. Shorter Methods. We can sometimes (simplify the geometrical rein

tions by introducing subsidiary quantities, say 6, 0, Ac. In this way we can

iess all the coordinates (xlt y } ), Ac. in terms of 0, 0, Ac. by equations of tin

form

x=f($, <f>, Ac.), y = F(0, 0, Ac.) .(1),

re 0, 0, Ac. are independent variables. Substituting in the dynamical equation >

and eliminating the reactions, we have 2n- equations of the second order to

determine 0, <f>,
Ac. in terms of t. Tht*c eliminations may bt avoided and tin-

result* thortlii written down by using I,agrangc'$ equations. Lagrange's method IH

described in chap. vn.

These equations, however obtained, contain 0, 0*, 0"; 0, 0', 0", Ac. and bv

differentiation we can find as many higher differential equations as are required.

0', $\ Ac. are zero, we find by differentiation

**

where saffixet M araal indicate partial differential coefficients, thus

There are similar expressions for the differential coefficient* of y. Substituting in

the itandard form for p, we obtain the required radius of curvature.

283. We notice that if the partial differential coefficient* /,, /^,
Ac, are Mro

the initial value of T" does not depend on any higher differential coefficient* of

0, 0, Ac., than the second, and these are given at once by the equations of motion.

e p= 3p"*/x, when the axis of y is taken parallel to the resultant force on

particle, the radius of curvature can then bt found trtthout d{fertn*i*ti*t Ik*

'tions of motion,
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dx f dO
, f d<f>

Smce
If=''<lt

+
-'*Tt

+ ~-

the geometrical meaning of the equations /g=0, /^
= 0, &c. clearly is that dxjdt=Q

for every geometrically possible displacement of the system. The point, whose

initial radius of curvature is required, must begin to move parallel to the axis of y

however the system is displaced.

Examples. Ex. 1. A particle is placed at rest at the origin and is

acted on by forces A', Y parallel to the axes. If X, Y are expanded in powers of t

and the lowest powers are X=ft, Y=g, show that the path near the origin is

f-mx- and that the radius of curvature is zero. If A'=4/t
2
, Y=g, the path is a

parabola whose radius of curvature is 3r/-//. We notice that in the first of these

cases A" is finite, in the second zero.

A.-. 2. A particle is at rest on a plane, and forces X, Y in the plane begin to

act on it. If these forces are functions of the coordinates x, y only, prove that the

initial radius of curvature of the path is

[Coll. Ex. 1895.]
This result follows from Art. 280.

Ex. 3. Two heavy particles are attached to two points B, C of a string, one

end A being fixed. Prove that if the string ABC is initially horizontal, the initial

radii of curvature of the paths of B and C are equal.

Prove also that if there are n particles on the horizontal string, all the initial

radii of curvature are equal. If AB, BC were two equal heavy rods, hinged at

B, and having A fixed, prove that the initial radii of curvature at B and C are

unequal.

In this problem we see beforehand that it will be unnecessary to differentiate

the equations of motion. Take the angles 0, <j>,
which the strings make with the

initial position ABC as the independent variables, Art. 283.

Ex. 4. Two heavy particles P, Q, are connected by a string which passes

through a smooth fixed ring 0, the portions OP, OQ of the string making angles

0, </>,
with the vertical. If the masses m, M of P, Q, satisfy the condition

m cos 6= MCOB
<f>,

the initial radius of curvature of the path of P is given by

M+m sin2 6 _ sin2 6 sin2

M ~~J~ ~T~ f T^r '

where r=OP and I is the length of the string.

Take the polar equations of motion, eliminate the tension and differentiate

twice. We thus find the initial values of 0", r", r iv
; since r"= the polar formula

for p is much simplified.

Ex. 5. A uniform rod, moveable about one end which is fixed, is held in a

horizontal position by being passed through a small ring of equal weight; show

that if the ring is initially at the middle point of the rod, when it is released

the initial radius of curvature of its path is 9 times the length of the rod.

[Coll. Ex. 1887.]

Taking as origin, the polar equation of motion of the particle shows that the

initial values of r", r'" are zero, while that of riv =g0" + 2r0"2. Taking moments
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about O, Art. 261, we have -r [(A/fc' + mr*) (f]
= (Ma+mr) gcoa 0. This gives the

initial value of 0"=60/7a. The length of the radios of curvature follows by the

differential calculus, Art. 280.

'>. Three particles whose masses are m lt 7/1.,, m 3 are placed at rest at the

corners of a triangle ABC, and mutually attract each other with forces which vary
according to some power of the distance. If m^cF, , m^aF, , m3m16.F5 are the

forces, prove that the initial radius of curvature p of the path of C is given by

where 0, are the angles CA, CB make with the resultant force on C,

P= (in,+m^ aFi +mt (FyC cos B + F,6 cos C),

Q= (! + m^) bF.2 + m^ (F^c cosA+Fx
a cos C),

and R is the resultant force on C.

Deduce that the initial radii of curvature of the three paths are infinite when
the triangle is equilateral.

Small oscillations with one degree of freedom.

285. The theory of small oscillations has already been dis-

cussed in the chapter on Rectilinear Motion so far as systems
with one degree of freedom are concerned. In this section a

series of examples will be found showing the method of proceeding
in cases somewhat more extruded.

The particle, or system of particles, is supposed to be either

in equilibrium or in some given state of motion. A slight

disturbance being given, we express the displacements of the

several particles at any subsequent time t from their positions

in the state of equilibrium or motion by quantities x
t y, &c.

These are supposed to be so small that their squares can be

neglected. If required, corrections are afterwards introduced

for the errors thus caused.

We form the equal i-m^ ..' motion either by resolving and

taking moments or by Lagrange's method By neglecting the

squares of the displacements these equations are made linear in

/, z, &c. They are also linear in regard to the reactions be-

tween the several particles. Eliminating the latter we obtain

linear equations which can in general be completely solved. I

solution when obtained will enable us to determine whether the

r-'
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system oscillates about its undisturbed state or departs widely

from it on the slightest disturbance.

The principle of vis viva supplies an equation which has the

advantage of being free from the unknown reactions, but it has

the disadvantage that its terms contain the squares of the velo-

cities, that is, the terms may be of the order we neglect. Being
an accurate equation, it may sometimes be restored to the first

order by differentiating it with regard to t and dividing by some

small quantity. Generally the solution is more easily arrived at

by using the equations of motion which contain the second

differential coefficients with regard to t.

286. Examples. Ex. 1. Two particles whose masses are in, m' are con-

nected by a string which passes through a small hole in a smooth horizontal table.

The particle m' hangs vertically, while m is projected on the table perpendicularly

to the string with such a velocity that m' is stationary. If a small disturbance is

given to the system so that m' makes vertical oscillations, prove that the period is

2r A / - where c is the mean radius vector of the path of m.V mg
Let r, be the polar coordinates of TO, z the depth of m', I the length of the

string and T the tension. The equations of motion after the disturbance are

dP
~ T

\dt)
= ~

m '

r dt

- - -I
dt2

~
m"

The second equation gives rzddjdt = h, where h is a constant whose magnitude

depends on the disturbance. Eliminating T, z and ddjdt we find

d?r mhz

Let r=c + where c is a constant which is as yet arbitrary except that the variable

f is so small that its square can be neglected.

d* 3/i2 mh*
...

(
m + ro

) __+,__ =__ m 0.

Let us now choose c to be such that the right-hand side of the equation is zero ;

then mh?=m'c3
g. Substituting for h we find

t=Asm(nt + a), n^= - 2
.

m + m' c

Since is wholly periodic and has no constant term, its mean value is zero,
when taken either for any long time or for the period of oscillation. It follows

that r=c is the mean radius vector of the path of m after the disturbance. This
is not necessarily the same as the radius of the circle described before disturbance

;

whether it is so or not depends on the nature of the disturbance given to the

system.

Let the particle m before disturbance be describing a circle of radius a with

velocity 7, then mV*J<i= m'g, each being the tension of the string; and the angular
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momentum of m is mVa. If the disturbance be given by a vertical blow B ap-

plied to the particle m', this reacts on m by an impulsive tension, and, the moment
of this about O being zero, the angular momentum of m is unaltered. In this

case we have h = Va and we find c = a. If the disturbance be given by a transverse

blow B applied at m, the velocity of m is changed to V where V - V=Bjm. In

this case h= Va and < is not equal to a.

2. A particle of mass m is attached to two points A, B by two elastic

strings each having the same modulus E and natural length /. If the particle be

displaced parallel to this line, prove that the time of oscillation is 2r N/(ml/2E).
[Coll. Ex. 1895.]

l-..r. 3. A heavy particle hangs in equilibrium suspended by an elastic string

whose modulus is three times the weight of the particle. The particle is slightly

displaced in a direction making an angle cot' 1 4 with the horizontal and is then

released. Prove that the particle will oscillate in an arc of a small parabola

terminated by the ends of the latus rectum. [Math. Tripos, 1897.]

I..r. 4. A straight rod AB without weight is in a vertical position, with its

lower end A hinged to a fixed point, and a weight attached to the upper end B.

To It are attached three similar elastic strings equally stretched to a length k times

their natural length and equally inclined to one another, their other ends being

attached to three fixed points in the horizontal plane through B. Show that, when

the strings obey Hooke's law, the condition for stability of equilibrium is that the

weight must not exceed that which, when suspended by one of the strings, would

cause an increase of length equal to f (2
- ljk)AB. Show that, when this condition

is fulfilled, the system can perform small vibrations parallel to any vertical plane.

[Math. Tripos, 1888.]

>. A smooth ring P can slide freely on a string which is suspended from

two fixed points A and B not in the same horizontal line. If P be disturbed, find

the time of a small oscillation in the vertical plane passing through A and B. If

T be the time, (T/2ir)
a
p = 4 (rr

/

)*/(r + r') {(r + r*)*- 4c}i, where r, r' are the distances

APt BJ' in equilibrium and AB = 2c.

'.. A rod of mass M hangs in a horizontal position supported by two equal

vertical elastic strings, modulus X and natural length a. Prove that if the rod

receive a small displacement parallel to itself, the period of a horizontal oscillation

a')*-
[Coll. Ez. 1897.]

7. A particle of mass m is attached to an elastic string stretched between

two points fixed in a smooth board of mass A/, and the board is free to slide on a

smooth table. Prove that the period in which the particle oscillates is less than

it would be if the board were fixed in the ratio 1 : v'(l + w/.V). [Coll. Ex. 1896.]

Reduce the board to rest

H. A ring of mass ran is free to slide on a smooth horizontal wire, and a

string tied to it passes through a small ring vertically below the wire at a depth A,

and supports a particle of mass m. Prove that if the first mass be released when
the upper part of the string makes an angle a with the vertical, and if $ be the

inclination after a time f, the equation of motion is

h (n + sin1 *) (deidt)*='2fl cos4 $ (sec a - sec 0).

Prove hence that the small oscillations about the position of equilibrium will be

synchronous with a simple pendulum of length >///. [Coll. Ex. 1896.]

122
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Ex. 9. A crane is lowering a heavy body and the chain is paid out with a

uniform velocity !'. Prove that the small lateral oscillations of the body are

determined by

where r is the length of the chain at any time and its inclination to the vertical,

the weight of the chain being neglected.

Also if N/r=y, 2Jgr=xrt prove that

This equation can be solved by the use of Bessel's functions. See Gray and Mathews'

Treatise on Bestel's Functions. [Coll. Ex. 1895.]

Ex. 10. A gravitating solid of revolution is cut by a plane perpendicular to

the axis. A particle is fastened by a fine string of length I to a point in the prolon-

gation of the axis, so that when the string is perpendicular to the plane section

the particle just does not touch the plane at its centre 0. Assuming the conditions

such that when the particle is slightly disturbed the motion is that of a simple

pendulum, prove that the time T of a small oscillation is given by l(2irlT)
2=R + IR'

where R is the force exerted by the solid on a unit mass at and JR' is the space

variation of the force at 0, taken outside the solid, along the axis. [Coll. Ex. 1892.]

Small oscillations with two or more degrees offreedom.

287. Oscillations about equilibrium. A particle is in

equilibrium under the action offorces X, Y which are given func-

tions of the coordinates. A slight disturbance being given, it is

required to determine whether the particle oscillates and the nature

of the motion.

Let a, 6 be the coordinates of the position of equilibrium,

a + x, 6-fy, the coordinates at any time t. We shall assume as

the standard case that x and y are small throughout the motion.

Solving the equations of motion we shall express x, y in terms

of t. By examining the results we shall determine whether and

how nearly the subsequent motion follows the standard form.

We shall suppose that the forces X, Y can be expanded in

integer powers of x, y, viz.

X = Ax + By, Y = B'x + Cy ............... (1),

where we have rejected the higher powers in our first approxima-
tion. There are no constant terms because X, Y vanish in the

position of equilibrium. Taking the mass of the particle as unity,

the equations of motion are

(2).
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To solve these we let S represent d tit.

Eliminating y, we have the two form-

i *Jjfj &-(<
|

* - 0, By = (* - A)x ......... (4).

The first of these is a differential equation with constant co-

efficients. Its solution can be written down by the usual rules

given in treatises on differential equations. The solution contains

four arbitrary constants, and the value of y follows from that of #,

without the introduction of any new constants.

The usual method is to assume as a trial solution x = Le'nt
.

Substituting we arrive at the biquadratic

nr-(A + C)m* + AC-BB' = ............(5);

.-. in- = J 01 + C </{(A
- Cy + 4B&}].

Assuming that no two roots are equal, let the four values of m
be + //<, /i

;
then

x =L^ + L,e-
nt + M,ent + M.JT* ............ (6),

when- 1. /., &c. are four arbitrary constants and the values of m
may be real or imaginary.

It is at once obvious, if m be positive or of the form r pJ 1,

where r is positive, that the value of x will become large by efflux

of time. It is therefore necessary for an oscillator?/ motion that

<ill the real roots ami the real parts of the imaginary roots of tlte

<li't*'rmiuantal
r</'/'///</// < :> ) should be negative.

Since the sum of the four roots of (5) is zero, some of the real

parts must be positive unless the four roots are of the form

/t\ 1. ft iff therefore necessa ///// an oscillator;/ motion that

both the roots of flu 1

///m//-,/' >muld be real and negative.

Th- algebraical conditions for this are, that both (A - Cy + 4/7;

and AC- BB should be positive and A + C negative.

As our solution represents the motion only \vh.n x and y
i. main small, it i- unnecessary for us here to consider any case

lt that in which the roots of (5) take the t'orms //<
2 -p,

na =
</-.

The motion is then given by

) + M Hiuv
//
= // sin (pt -f o) + M' sin

<//f -f
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where BL'= - (p* + A)L and EM ' = -
(g

3
4- A)M. The quantities

p
2

, q- are the roots of

.................. (8).

288. If B, B' have the tamt sign, tJit roots of tlie quadratic (8) are separated

by each of the values />
2= - J, p*= - C. To prove this, it is sufficient to notice

that the left-hand side of that equation is positive when ;>-= 00 and is negative

when p* has either of the separating values.

It is also sometimes useful to notice that the roots cannot be equal unless the

two separating values A and C are equal and that the equal roots are then

p*=-A=-C. If AC-BB' = the biquadratic (5) has two equal zero roots,

though the roots of the same equation regarded as a quadratic are unequal.

289. To find the four arbitrary constants L, M, a, /3, we solve the equations (7)

irith regard to the trigonometrical terms. We thus find

= -
(p*-q*) Lsm^t+ a)}

= (!*-$) M8m(qt +p)\-

Putting t = 0, we at once have the values of Lsina, Mainp in terms of the

initial values of the coordinates. Differentiating with regard to t and again putting

f =0, we find L cos a, J/cos/3 in terms of the initial velocities.

290. Equal roots. The case in which the equation (5) has equal roots has

been excepted. This occurs when either (A
-
C)

2 + BB'= or AC-BB'=0.
When B, B' have the same sign the first alternative requires A = C and either B or

B' equal to zero. In the second alternative the equation has two zero roots.

Excepting when both B and B' are zero, the solution of the dynamical equations

(2) is known to contain terms of the form (Lt + L') emt . If m is positive or zero

(or has its real part positive or zero), this term will increase indefinitely with t.

If however the real part of m is negative and not zero, say equal to -
r, the maxi-

mum value of Lte'* is Ljre. Since L is so small that its square can be neglected,

this term in the solution will always remain small except when r also is small.

The existence of equal roots in the determinantal equation (5) does not therefore

necessarily imply that the oscillation becomes large.

291. Before disturbance the particle P was in equilibrium at the origin under

the influence of the forces X, Y given by (1) Art. 287. When AO=BB\ the

equations X=0, l'=0 are satisfied by values of x, y other than zero. These lie

on the straight line Ax + By Q. The dynamical significance of the condition

AC BE' is therefore that there are other positions of equilibrium in the immediate

neighbourhood of the origin. The roots of equation (8) being 2>
2= 0, q

z= -A-C,
the values of x, y take the form

*= L
1
e + L2 + .fl/sin (qt + p),

By= -A (I^t + LJ-CMBiufat + p).

The first terms represent a uniform motion along the line of equilibrium,.

while the trigonometrical terms represent an oscillation in the direction By=- Gx.

Whether the particle will travel far or not along the line of equilibrium will depend
on the nature of the forces when x, y become large.
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292. Principal oscillations. Let the type of motion be

that represented by such equations as (7). By giving the particle

the proper initial conditions it may be made to move in either

<>t the ways defined by the following partial solutions

x = L sin (pt + a), y = L' sin (pt + a) .........(10),

x =M sin (qt + ), y = M' sin (qt + 0) .........(11).

Each of these is called a principal oscillation and all the modes

of oscillation included in (7) are compounded of these two. The

dtinttiiiical peculiarity of a principal oscillation is the singleness

of the period.

The solution (10) is sometimes taken as the trial solution instead of the

exponential used in obtaining (5). Practically we then begin the solution by

hnding the principal oscillations and finally combine these into the general

solution i7l.

Tin- paths of the particle when describing the principal oscil-

lations are the two straight lines

Ly = L'x, My = M'x.....................(12).

In each oscillation the ratio of the coordinates, being equal to

L'/L or M'/M, is constant throughout the motion. We have by

(7), using the values of p* 4- <f> pV giyen by ^ne coefficients of

the quadratic (8),

B'~ .............. (1

It follows that when B, B have the same sign, the ratios L'/L,

M'/M have opposite signs. In one principal oscillation, the co-

ordinates x, y increase together ;
in the other, when one increases

the other decreases.

We also notice that when B B
t the two straight lines (12)

are at right angles.

The directions of these rectilinear oscillations may be obtained without inves-

tigating the motion. The lines must be so placed that if the particle be displaced

along either, the perpendicular force must be zero. The lines are therefore

given by
Xy-Yr = 0i .. By*+(A -

C) *y - lfte*= 0.

These lines are real when (A-C)* + \BW is positive. This condition is

satisfied when the roots of the determinantal equation (5) are real or of the form

JN'-l-

293. Whrn th. ..., nlinates are such that only one varies along
M principal oscillation, they are called principal coordinate*.
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Referring to the equations (9), we see that if we put

By + (q* + A)x = %t By + (p + A)x = i, t

f, ff will be the principal coordinates. This transformation of

coordinates is always possible, so long as jo
2 and <f are real and

unequal.

We may also discover the principal coordinates without previously finding the

values of j)
2
, q

2
. We deduce from the equations (2)

by using an indeterminate multiplier X. If now we write (B + \C)I(A + \B')=\,
we see that x + \y will be a trigonometrical function with one period. We have a

quadratic to find X; representing the roots by X,, \^, the principal coordinates are

, or any multiples of these.

294. Conservative forces. When Hie forces which act on

the particle are conservative, the solution admits of some simplifica-

tions. Let 7 be the force function, then, since dlljdx and dU/dy
vanish in the position of equilibrium, we have by Taylor's theorem,

U= UQ + %(Ax* + 2Bxy+Cy*)+ ............... (1).

It follows that the equations of motion are

^ = X = Ax + By,
d*y=Y=Xx + Cy ......... (2).

Comparing these with the former values of X, F, we see that

& = B.

If we turn the axes round the origin we know by conies that

the equation (1) can be always cleared of the term containing the

product xy. Representing the new coordinates by f, rj, let the

expression for U become

ff=Z7 + iU'p + CV) + .................. (3),

where A' + C' = A + C, A'C' = AC- R-. The equations of motion

are then

The motion is oscillatory for all displacements or for none

according as A', C' are both negative or both positive. If A' is

negative and C' positive, the motion is oscillatory for a displace-

ment along the axis of f and not wholly oscillatory for other

displacements.
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The level curves of the field of force are obtained by equating
U to a constant

;
in the neighbourhood of the position of equili-

brium, these become the conies

=
,
or

The lines of the principal oscillations are the directions of the

principal diameters of the limiting level conic, and the periods

of the principal oscillations are proportional to the lengths of the

diameters along which the particle moves.

295. The representative particle. The investigation of the small oscilla-

tions of a particle in a given field of force has a more extended application to

dynamical problems than appears at first sight. Suppose, for example, that a

system, consisting of several particles connected together by geometrical relations,

has two degrees of freedom. Let the position of this system be defined by the

two coordinates x, y. The equations giving the small oscillations, after the elimi-

nation of the reactions, take the form

because the squares of .r and ij are neglected. If /; = /" these are the equations of

motion of a single particle moving in the field of force defined by

U - 7 =i (Ax* + 2Bxy + Cy*).

The investigations given in Art. 292 and Art. 'J'.M apply therefore to both problems.

To exhibit the motion of an oscillating system to the eye, we take its coordi-

nates x, y to be also the Cartesian coordinates of an imaginary particle which

moves freely in the field of force U. We represent by a figure the level conies, the

path of this representative particle, and sketch the positions of the principal

oscillations. The special peculiarities of the motion will then become apparent in

the figure.

296. Test of stability*. Let the field of force in which

the particle moves be given by the function U. Since dU/dx and

dU/dy vanish in the position <>t' rjuilil>riuin. T must be at that

;i maximum ..r a minimum. In the neighbourhood we have

It AC & is positive, U is a maximum >r a minimum tor sill

displacements according as the common sign of A and C is nega-
tm; or positive, and if AC - B* is negative, U is a maximum

* The energy test of the stability of a position of equilibrium is given by

Lagrange in the J/'oinifi" Analytiqw. He gives both this proof and that in

Art. 297. The demonstration for the general case of a system of bodies has been

much .simplified by Lejeune-Dirichlet in Crr/fc' Journal. 1846, and /

1847. See the author's Rigid Dynamics vol. i.; the corresponding test

-

tui'ility of a State of motion i- m vol. ii.
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some and a minimum for other displacements. It follows from

Art. 294 that the motion of the particle, when disturbed from its

position of equilibrium, will be wholly oscillatory if U is a real

maximum at that point The particle will oscillate for some dis-

placements and not for othei*s if U has a stationary value, and will

not oscillatefor any displacement if U is a real minimum.

We have here assumed that all the coefficients A, B, C are

not zero. When this happens the cubic terms in the expression
for U govern the series. The equations of motion (2) of Art. 295
will then have terms of the second order of small quantities on

their right-hand sides.

Besides this if AC #2 = 0, the quadratic terms of the ex-

pression for U take the form of a perfect square, viz. (Ax 4- By^jA.
In this case the forces X^dUfdx and Y=dU/dy contain the

common factor Ax + By so that there are other positions of

equilibrium in the neighbourhood of the origin, see Art. 291. To
determine the motion, even approximately, it is necessary to take

account of the powers of x, y of the higher orders.

The geometrical theory of maxima and minima has a cor-

responding peculiarity, for it is shown in the Differential Calculus

that further conditions, involving the higher powers, are necessary

for a maximum or minimum.

The following investigation shows how far this correspondence
extends.

297. Let a particle be in equilibrium at a point P whose

coordinates are #
, y ,

and let U f(x t y) be the work function.

Let the particle be projected with a small velocity Vi from a point

Plf whose coordinates are xlt y-^, very near to P . The equation of

vis viva gives (Art. 246)

0,) (1),

17,) (2),

where v 2 =
t>i

2 + 2(tf
- UJ (3).

Let U be a maximum at the point P for all directions of

displacement, then Ul < U and v 2 is a small positive quantity.

As the particle recedes from P
, U^ U increases, but the equation

(2) shows that the particle cannot go so far that U U becomes
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greater than the small quantity i?v'. The equilibrium is therefore

stable for displacements in all directions.

Let U be a minimum at P for all directions of displacement,

then as the particle moves from P the difference U UQ increases.

So far as the principle of vis viva is concerned, there is nothing
to prevent the particle from receding indefinitely from P .

Let U be a maximum for some directions of displacement
and a minimum for others. The particle cannot recede far from

P in the directions for which U is a maximum, but there is

nothing to restrict the motion in the other directions.

298. /:.-. A particle P is in equilibrium under the action of a system of

fixed attracting bodies situated in one plane, the law of attraction being the

inverse th power of the distance. Prove that, if c> 1, the equilibrium of P cannot

be stable for all displacements in that plane, though it may be stable for some and

unstable for other displacements. If K < 1, the equilibrium cannot be unstable

for all displacements in that plane.

To prove this let n^ be any particle of the attracting mass, coordinates /, g ;

let x, y be the coordinates of P. The potential of m
l

at P is by definition

U
l
= -^

, where r, is the distance of m, from P. We then find by a partial

(-IK*"
differentiation

<r-f\ cPU
l _(K -l)m l

dy*
=

ri
<+l

Summing tin- for all the particles of the attracting mass and writing '=26',, we
rind

<PU <PU , m

The right-hand side is positive or negative according as *>1 or *<1.

Taking the equilibrium position of P for the origin and the principal direction*

of motions for the axes, Art. 294, we see by Taylor's Theorem

where A' = d*t//<Lc
i

, C'=d*t//dy. It is evident that U cannot be a maximum for

all displacements in the plane of xy if A' + C' is positive and cannot be a minimum
for all displacements in the plane if this sum is negative. The result also follows

from Art. 296.

299. Barrier curves. It is clear that this line of argument

may be extended to apply to cases in which there is no giv.
n

position of <<|uilil>rium in the neighbourhood of the point

projection. L-t tin- particle be projected from any point P, with

my v.-locity vl in any direction. Throughout the subsequent
mot i ..II we have

-r
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where U is a given function of x, y and U}
is its value at the

point of projection.

If we equate the right-hand side of this equation to zero, we
obtain the equation of a curve traced on the field of force at

which the velocity of the particle, if it arrive there, is zero.

This curve is therefore a barrier to the motion, which the particle

If the barrier curve be closed as in Art. 297, the particle is,

as it were, imprisoned, and cannot recede from its initial position

beyond the limits of the curve. Some applications of this theorem

will be given in the chapter on central forces.

The right-hand side of the equation will in general have

opposite signs on the two sides of the barrier. When this is

the case the particle, if it reach the barrier in any finite time,

must necessarily return, because the left-hand side of the equation
cannot be negative.

If the right-hand side of the equation have the same sign on

both sides of the barrier, that sign must be positive, and U must

be a minimum at all points of the barrier. The particle is

therefore approaching a position of equilibrium and arrives there

with velocity equal to zero. The particle therefore will remain

on the barrier, see Art. 99.

The barrier is evidently a level curve of the field of force

and, as the particle approaches it, the resultant force must be

normal to the barrier. Just before the particle arrives at its

position of zero velocity, the tangential component of the velocity

must be zero, for this component cannot be destroyed by the

force. The path cannot therefore touch the barrier, but must

meet it perpendicularly or at a cusp.

3OO. Examples. Ex. 1. Two heavy particles of masses m, m', are attached

to the points A, B of a light elastic string. The upper extremity is fixed and

the string is in equilibrium in a vertical position. A small vertical disturbance

being given, find the oscillations.

Let x, y be the depths of m, m' below 0; a, b the unstretched lengths of OA,

AB, E the coefficient of elasticity. The equations of motion reduce to

'E E\ E
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To solve these we put

..................... (2).

the constants h, k being introduced to cancel the right-hand sides of the equations
of motion. Since jr = h, y = k make <f-.r/d*

2= 0, Ffy/rff
2
=0, these constants are the

equilibrium values of x, y. We then find

One principal oscillation is given by (2) and the other by using instead of p*,

the other root of the quadratic. It follows that in one oscillation the two particles

are always moving in the same directions, that is both are moving upwards or both

downwards. In the other when one moves upwards the other moves downwards.

'2. Two heavy particles, of masses m, J/, are attached to the points A, B
of a light inextensible string, the upper extremity being fixed. Prove that the

periods of the small lateral oscillations are 2w/j> and 2*7? where p and q are the

roots of

JL _a +6JL
m afr _

J*~~9~ tf*

+ W+^j*~
and OA=a, AB = b. Prove also that the magnitudes of the principal oscillations

in the inclinations of the upper and lower strings to the vertical are in the ratio

(g
-
bpPj/ap

2
. Show that in one principal oscillation the two particles are on the

same side of the vertical through and in the other on opposite sides.

.'.. Two particles M, m, are connected by a fine string, a second string

connects the particle m to a fixed point, and the strings hang vertically; (1) m
is held slightly pulled aside a distance h from the position of equilibrium, and,

being let go, the system performs small oscillations; (2) .17 is held slightly pulled

aside a distance &, without disturbance of m, and being let go the system performs
small oscillations. Prove that the angular motion of the lower string in the first

case will be the same as that of the upper string in the second if Mk-(M+m) h.

[Math. Tripos, 1888.]

1. Three beads, the masses of which are m, m', m", can slide along the

rides of a smooth triangle ABC and attract each other with forces which vary as

the distance. Find the positions of equilibrium and prove that if slightly disturbed

the periods 2v,'p of oscillation are given by

<' (p*-y)C06?C A 008 B COS C= 0,

where a, ft, y represent m" + m', m + m", m' -t- m respectively.

*>. A particle P of unit mass is placed at the centre of a smooth circular

ontal table of radius a. Three strings, attached to the particle, pass over

smooth pulleys A, B, C at the edge of the table and support three particles of

masses ro, , m,, m, ; the pulleys being so placed that the particle P is io equilibrium.

A small disturbance being given, prove that the periods of the oscillations are

2T/p, where

Hm (w^ + M, - mj (m,+ m, - m, ) (m, + 114
- mj,
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Ex. 6. A heavy particle P is suspended by a string of length I to a point A
which describes a horizontal circle of radius a with a slow angular velocity n.

Prove that the two periods of the oscillatory motion are 2?r/n and

3O1. Particle on a surface. /-.'./. 1. A heavy particle rests in equilibrium
on the inside of a fixed smooth surface at a point 0, at which the surface has only
one tangent plane. The particle being slightly disturbed, it is required to find the

oscillations.

Taking the point O as origin and the tangent plane as the plane of .ry, the

equation of the surface may be written

where the axes of x, y are the tangents to the principal sections and I/a, 1/6 are

the radii of curvature of those sections. By the principles of solid geometry the

direction cosines of the normal at any point P become (ax, by, 1) when the squares

of x, y are neglected. The equations of motion are therefore

d?x rf
2y d?z

m-^=-Rax, mjji=-Rby,
m =- mg + R.

Since z is of the second order of small quantities the third equation shows that

R=mg, and the other two become

If a and b are positive, that is if both the principal sections are concave up-

wards, the motion is oscillatory and the two periods of oscillations are 2irl*Jag

and 2irl*Jbg. The particle, by definition, performs a principal oscillation when its

motion has but one period. This occurs when

(1)
= 0, ?/

= sin(v% + /3), (2) y= 0, x=A sin (Jagt + a).

The directions of these oscillations are the tangents to the principal sections.

Ex. 2. A particle rests on a smooth surface which is made to revolve with

uniform angular velocity w about the vertical normal which passes through the

particle. Show that the equilibrium is stable (1) if the curvature is synclastic

upwards, and w does not lie between certain limits, or (2) if the curvature is anti-

clastic and the downward principal radius is greater than the upward principal

radius, and o> exceeds a certain limit. Find the limits of w in each case.

[Math. Tripos, 1888.]

Taking as axes the tangents to the principal sections, the equations of motion

(Art. 227) reduce to

To solve these we put x=L sin (pt + a), y= L' cos (pt + a). We then obtain a

quadratic for p* and the ratio L'jL.

The path of the particle relatively to the moving surface when performing the

principal oscillation defined by either value of p'
2

is the ellipse Ijj +
( r"' )

=1*

The two ellipses are coaxial.

3O2. The insufficiency of the first approximation. In forming the

equations of motion in Arts. 287, 294, we have rejected the squares of x and y.
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Bat unless the extent of the oscillation is indefinitely small, the rejected terms

have some values, and it may be, that they sensibly affect the results of the first

approximation. See Art. 141.

3O3. To find a second approximation we include in the equations (2) of Art.

M terms of the second order. We write these in the form

(P-A)x- By=El y
~

Taking as our first approximation

x=L Bm(pt + a) +M sinfat-f/S))

D = L' sin (pt + a) + M '
sin (qt + p)\

' '

we substitute these in the right-hand sides of (1). The equations take the form

- B'a: + (3*
- C) y = 2Q sin (Xf + /*)/"

where X may have any one of the values 0, 2p, 2q t pq and P, Q contain the

squares of the small quantities L, J/, L', M'. To solve these equations, we con-

sider only the specimen term of (3) and assume

xL Bin(pt + a) +M Bm(qt + p) + R sin(Xt + /*)[

y = L'8in(pt + a) + M'6m(qt + p) + R'Bm (Xt + /*)j

..............

We find by an easy substitution

-P(X+C)+V/. PB'-Q(\'+ A)
>~ BB" ~(\*+ A)(\*+C)-BB''

It appears that R, R' are very small quantities of the second order, except when
\ i- such that the common denominator is small, and in this case R, R' may
become very great. The roots of the denominator are X2=pa

, X3
=g*, and the

denominator is small when X is nearly equal to either p or q. This requires either

that one of the two frequencies p, q should be small or that one should be nearly

double the other.

If for example p is nearly equal to 2q and the numerators of /?, R', are not

thereby made small, the terms defined by\=p-q and \=2q will considerably in-

fluence the motion, the other terms producing no perceptible effect. Ifp = 2q exactly

the denominator is zero and both It, R' take infinite values. The dynamical meaning
<>f tin- infinite term is that the expressions (2) do not represent the motion with

sufficient accuracy (except initially) to be a first approximation. The corrections

to these expressions are found to become infinite and if we desire a solution we
must seek some other first approximation.

304. Oscillation about tady motion. / ../. 1. The constituents of a

multiple star describe circles about their centre of gravity O with a uniform

angular velocity n, the several bodies always keeping at the same distances from

each other. A planet P, of ituignijicant nuui, freely describes a circle of radius a,

centre O, with the same angular velocity, under the attraction of the other bodies.

required to find the oscillations of P when disturbed from this state of

on.

Let r = a(l + .r), e = nt + y be the polar coordinates of the planet P at any
. Let the work function in the revolving field of force be
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at all points iu the neighbourhood of the circular motion. Since that motion is

possible only in that part of the field in which the force tends to and is equal to
2
a, it is clear that A = - a*n- and # = 0.

Substituting the values of r, d in the polar equations

^!_ (**\*-**L 1 ?L( *M\_dU
dt2

T
\dt)

~
adx' r dt\

T
dt)~rdy

..................
( )f

we find the linear equations

(a
2S2 - aV -

A) x -
(2a

2n3 + B) y= 0)

(2a*n8-3)x + (a*P-C)y = ty
"

A principal oscillation is therefore given by

x= Lcospt + L' smpt, y=M cospt + M' sinpt .............. (4),

, 2a*npL'-BL , -2a*npL-BL'
'

+a2n2
) '(a?p*+G)-B*-4a*n*p*= .................. (6).

The path of the particle when describing a principal oscillation relatively to

its undisturbed path is the conic

(a^+A + aW)x* + 2Bxy + (aY+C)y*=^^(L*
+ L'*) ......... (7),

the ratio and directions of the axes being independent of the disturbance. In the

limiting case in which n= the conic reduces to two straight lines.

When the multiple star has two constituents A, B, whose masses are M, M e

, the

planet P can describe a circular orbit only when Mp~* sin APO = M'p'~
K siuBPO,

where p= AP, p'
=BP and the law of force is the inverse /cth power of the distance.

Since O is the centre of gravity of M, M' this proves that either the angle APO is

zero or p= p', except when K= - 1. The planet P must therefore be either in the

straight line AB or at the corner C of the equilateral triangle ABC.

When the planet P is in the straight line AB at a point C such that the sum of

the attractions of A and B on it is equal to w2
. OC, the planet can describe a circle

about with the same periodic time as A and B. This motion is unstable.

When the planet P is at the third corner C of the equilateral triangle ABC, the

circular motion is stable when -
5=-*- > 3

(
- -

)
.MM \o K j

These two results may be obtained in several ways. Putting p, p' for the

distances of P from the two primaries the work function is

Expressing this in terms of r, 6, and expanding in powers of x, y, including the

terms of the second order, the values of A, B, C in equation (1) become known.

The periods are then given by (6).

Instead of using the work function, we may determine the forces dUjadx and

dU/rdy by resolving the attractions of the primaries along and perpendicular to

the radius vector of P. This method has the advantage that the task of calculating

the terms of the second order becomes unnecessary.

Lastly, we may use the Cartesian equations referred to moving axes which

rotate round with a uniform angular velocity n, OC being the axis of ;

Art. 227.
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In all these methods, the assumption that the mass of the planet P is insignifi-

cant compared with that of either of the attracting bodies greatly simplifies the

analysis. It does not seem necessary to examine these cases more folly here, as

the results and the method of proceeding when this assumption is not made will be

considered further on.

2. If in the last example the attracting primaries either coincide or are

so arranged that the field of force is represented by U- U =A x + ^Axi
; prove

that other circular orbits in the immediate neighbourhood of the given one are

possible paths for the particle P, Art. 291. Prove also that after disturbance the

oscillation of P about the mean circular path is given by

x = Lcos(pt + a), py = - 2nL sin (pt + a),

where p5=3n*-^/o2
, the oscillation having only one period.

3. Two equal centres of force 5, S', whose attraction is jtp*, rotate round

the middle point O of the line of junction with a uniform angular velocity n.

A particle in equilibrium at O is slightly disturbed, prove that the periods of the

small oscillation are given by (p*+ n2 - ft) (p* + n2 -
K/3)

= 4n2p
s where /S

= 2fi6*
~ 1 and

SS'= 2b. Theuce deduce the conditions that the equilibrium should be stable.

Problems requiring Finite Differences.

305. /;./ . 1. A light elastic string of length nl and coefficient of elasticity

loaded with n particles each of mass m, ranged at intervals I along it begin-

ning at one extremity. If it be hung up by the other extremity, prove that the

periods of its vertical oscillations will be given by the formula

lm
^cc 1

where =0, 1, 2 ... n- 1*. [Math. Tripos, 1871.]i

Let JT
K
be the distance of the *th particle from the fixed end ; r, the tension

above, Tf+l that below, the particle. We then have

"""= * + r +l- -a).

and by Hooke's law for elastic strings

The equation of motion is therefore

-* ji

where c*= Kjlm . We assume as the trial solution

..... .(4),

where h
g
and A'

x
are two functions of * which are independent of f, and p, e are

independent of both x and t. Sul-iit nt inj? we find

<-i=-

The eolation is given at greater length than U necessary for thii example, in

order to illustrate the various OMM which may arias.

i, ...
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To solve the first of these linear equations of differences we follow the usual rules.

Taking XK
=Aa* as a trial solution, where A and a are two constants, we get after

substitution and reduction

Let these values of a be called a and . Then

X
K
= Aa* + Bp' .................................... (8).

We notice that when either #=0 or 2c the equation (6) has equal roots, viz. a= l

or - 1. The theory of linear equations shows that the terms depending on these

values of p take a different form, viz.

X
K=(A+BK)(1)

K
................................. (9).

The complete value of X
K may be written in the form

X
K
= hK + A Q+ BOK + (A 2e + 2CK) (

-
1)" sin (2ct + e2c)

+ S (Apa
K + Bpp) sin (pt + cp)

...... (10) ,

where 2 implies summation for all existing values of p.

We have yet to examine the conditions at the extremities of the string. The

formula (2) does not express the tension of the highest string unless we suppose

that x = Q. Again the tension below the lowest particle must be zero and this

requires that Tn+1 = 0. The equation (3) will therefore express the motion of every

particle from K=! to K=n only if we make

*o=0, xn+l -xn= l ................................. (11).

Since xQ
= for all values of t, it follows from (10) that

h +A,= Q, A 2C
= 0, Ap + Bp= ........................ (12).

Since xn+l -xn =l, we see in the same way that

hn+l -hn +B =
l, 20= 0, Ap a.

n+l +Bppn-*-1 = Apan +Bppn......... (13).
Eliminating the ratio Ap/Bp we have

an+l_0*H_ an_n ................................ (14).

If p>2c we see by (7) that both a and /3
are real negative quantities. The equation

(14) has then one side positive and the other negative, since the integers n, n+1
cannot be both even or both odd. Hence p must be less than 2c, let p= 2c sin 6,

hence a= cos 20 + sin 20^-1, /3
= cos20-sin20 v/- 1 ............... (15).

The equation (14) now gives sin(2n+ 2)
= sin2n0, excluding p= Q we have

2i + 1 TT p . 2i + 1 TT

'=2n+12> fr8m
2 + 12-

..................... < 16>'

where i has any integer value. It is however only necessary to include the values

t=0 to i=w- 1. The values of indicated by i = i' and 2n - i' are supplementary,

while the values of sin indicated by i=i' and t' + 2n + l are equal with opposite

signs. The value i= n is excluded because the value p = 2c has been already taken

account of.

The oscillations of the /cth particle are therefore given by

x
K
=H

ic
+ '2CpBin2Kesm(pt + ep) ........................ (17),

where H =h +A + BK, and C =2^-1.
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The value of h
K might he determined by solving the second equation of

differences (5), using the rules of linear equations adapted to that equation. But

vident that in the position of equilibrium of the system, when there is no

oscillation, every Cp=0, and therefore that position is determined by x
f
=If

K .

This enables us to deduce HK
from the elementary rules of Statics.

We notice that in equilibrium, Tn=mg, rn_ 1
= 2m0, &c., T

K
= (n + l- K)mg.

Hence by Hooke's law

Adding these for all values of K from x=l to K = K, and remembering that //

by (12), we find

The equation (17) shows that the motion of every particle is compounded of n

principal or simple harmonic oscillations. The periods of these are unequal and
are represented by ST//J where p has the values given in (16).

Suppose the system to be performing the principal oscillation defined by the

value of 6=TrJ2y. By considering the signs of sin 2x0 in (17) we see that all the

particles determined by x<y are moving in the same direction as the highest

particle, those determined by K > y but < 2-y are moving in the opposite direction,

those given by jc>27 but <3y are moving at any time in the same direction, and
so on.

-'. A smooth circular cylinder is fixed with its axis horizontal at a height

h above the edge of a table. A light string has a series of particles attached to it

over a part of its length, the particles being each of mass m and distant a apart.

The portion of the string to which the particles are attached is coiled up on the

table, and the rest is carried over the cylinder, and a mass M attached to the

further end of it. The system is held so that the first particle is just in contact

with the table, the free portions of the string being vertical, and is then allowed

to move from rest
; prove that if r be the velocity of the system immediately after

the nth particle is dragged into motion (na < h) t
then

,_(n-l)ga 6M-n(2n-l)m

Supposing the string of particles to be replaced by a uniform chain deduce from

the above result the velocity of the system after a length x of the chain has been

dragged into motion. If I be the length of the chain and M the mass, then, if I be

less than h, the amount of energy that will have been dissipated by the time the

chain leaves the table will be
~ M

. [Coll. Ex. 1887.]

If rn represent the velocity required, we deduce from via viva and linear

momentum at the next impact the equation

Writing the left-hand side *(n+l)-*(n), we find *( + 1)
- 0(1) by summing

from n = 1 to n. Remembering that
t>,
= 0, this gives vn . The energy dissipated is

found by subtracting the semi vis viva, viz. $ (A/ + M ) f, from the work done by

grav. !-\*)lg.

132



196 FINITE DIFFERENCES. [CHA1>. V.

Ex. 3. A train of an engine and n carriages running with a velocity w, is

brought to rest by applying the brakes to the engine alone, the steam being cut off.

There is a succession of impacts between the buffers of each carriage and the next

following. Prove that the velocity v of the engine immediately after the 7-th impact
is given by

(M + rw)
s
(v
-
w)

2= Alafr {
2M+ m (r-l)},

where m is the mass of any carriage, M that of the engine, a the distance between

the successive buffers when the coupling chains are tight, / the retardation the

brake would produce in the engine alone. [Coll. Ex.]

Ex. 4. A heavy particle falls from rest at a given altitude li in a medium

whose resistance varies as the square of the velocity. On arriving at the ground

it is immediately reflected upwards with a coefficient of elasticity ft. Show that

the whole space described from the initial position to the ground at the nth impact

18 10

If ?/n be the height described just after the ?ith rebound, we show

To solve this equation of differences we put ?<n= 1 + l/wn . The equation then takes

a standard form with constant coefficients. The whole space described is found by

taking the logarithm of the product w u
1
M2 ...Mn_1

.

This problem was first solved by Euler in his Mechanica, vol. i. prop. 58, for

the case in which /3
= 1. An extension by Dordoni, Memorie della Societa Italiana,

1816, page 162, is mentioned in Walton's Mechanical Problems, chap. n. page 247.



CHAPTER VI.

CENTRAL FORCES.

Elementary Theorems.

306. To find the polar equations of motion of a particle

describing an orbit about a centre offorce.

Let the plane of the motion be the plane of reference and let

the origin be at the centre of force. Let F be the accelerating

force at any point measured positively towards the origin. Then

by Art. 35,

The latter equation gives by integration

r*d6/dt
= l< ........................... (2),

where h is an arbitrary constant whose value depends on the

initial Conditions.

r

l'h is important equation can be put into other forms of which

much use is made. Let v be the velocity of the particle,/) the

perpendicular drawn from the origin on the tangent Let A be

the area described by the polar radius as it moves from some

initial position to that which it has at the time t. Then (Art. 7)

Remembering that v = ds/dt, we see that the equation (2) may be

written in either of the forms

V -*
Th> tir-t of these shows that the velocity at any point of the orbit

is inversely proportional to the perpendicular drawnfrom the centre

on the tangent. The second, by integration between the limits

t t9 to t, shows that the polar area traced out by the radius vector
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is proportional to the time of describing it. We also see that the

constant h represents twice the polar area described in a unit of

time. Both these are Newtonian theorems.

We also infer that in a central orbit, the angular velocity dd/dt

always keeps one sign and never vanishes at a finite distance from

the origin. The radius vector therefore continually turns round

the origin in the same direction.

307. Conversely, we may show that if a particle so move that

the radius vector drawn from the origin describes areas propor-

tional to the time the resultant force always tends to the origin

and is therefore a central force. To prove this let F and G be

the components of the accelerating force along and perpendicular

to the radius vector. Taking the transversal resolution, we have

_ I -r2 I C1

rdt\ dt)~

As already explained r^d6 = 2dA, and if the area A bear a constant

ratio to the time, say A = at, we have at once r-dOjdt = 2a and

therefore G = 0.

308. If m is the mass of the particle, its linear momentum
is mv and this being directed along the tangent to the path, the

moment of the momentum about the centre of force is mv.p.
The moment of the momentum is called the angular momentum

(Art. 79) and we see that in a central orbit the angular momentum
about the centre of force is constant and equal to mh. When we

are concerned only with a single particle its mass is usually taken

to be unity, and h then represents the angular momentum.

309. To find the polar equation of the orbit we must eliminate

t from the equations (1). Let r=l/u, then, as in Art. 268,

dr _ 1 du d6 _ ,du

dzr d^u dO , dzu

SP" 3H"~ W
Substituting this value of d**r/dt* and the value of d6jdt = hu-

given by (2) in ^-r(-j-\ =-F, we have
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When the polar equation of the path is given in the form

u=f(d) the equation (4) determines F in terms of u and 0.

Since the attractive forces of the bodies which form the solar

system are in general functions of the distance only we should

eliminate 6 by using the known polar equation of the path. We
thus find F as a function of u only.

Strictly this expression for F only holds for points situated on

the given path, but if the initial conditions are arbitrary, the path

may be varied and the law of force may be extended to hold for

other parts of space.

When the force F is given as a function of r or 1/u, the

fvRu

equation (4) is a differential equation of the form j^=/00-
This differential equation has been already solved in Art. 97.

It is evident from dynamical considerations that when the

central force is attractive, i.e. when F is positive, the orbit must

be concave to the centre of force, and when F is negative the

orbit must be convex. By looking at equation (4) we immediately

verify the theorem in the differential calculus that a curve is

( /
-

/ /

concave or convex to the origin according as
,
. -f is positive or

negative.

310. To apply the tangential and normal resolutions to a
'/ nrtn'f.

Referring to Art. 36 we have the two equations

v -j-
= - F cos

<f>,

~ = Fsin6 (5),as p

where < is the angle behind the radius vector when the particle
moves in the direction in which \ is measured. Writing dr/ds for

cos
(f>
and integrating we have

*-C-2fFdr (6),

where C is a constant whose value depends on the initial con-

ditions. This equation is obviously the equation of vis viva,

Art. 246. The integral has a minus sign because the central force

is, as usual, measured positively towards the origin, while the

radius vector is measured positively from the origin.
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If we substitute for v its value h/p given by (3) and differentiate

we deduce

This expression for the central force F is very useful when the

orbit is given in the form p f(r).

311. Considering the normal resolution (5), we have an ex-

pression for v which is useful when both the law of force and the

path are known. It has the advantage of giving the velocity

without requiring the previous determination of either of the

constants C or h. If ^ is one-quarter of the chord of curvature of

the path drawn in the direction of the centre of force we may
write the equation in either of the forms

This is usually read
;
the velocity at any point is that due to one-

quarter of the chord of curvature.

When the particle describes a circle about a centre of force

in the centre sin < = 1 and p is the radius r. The velocity given

by the normal resolution, viz. vz
jr F, is often called the velocity

in a circle at a distance rfrom the centre offorce.

312. The velocity acquired by a particle which travels from

rest at an infinite distance from the centre of force to any given

position P is called the velocity from infinity. Referring to the

equation of vis viva (6), let

Now v = when r = oo
; hence, if n is greater than unity, we

have (7 = 0. The velocity from infinity to the distance r = R is

2a 1
therefore given by v2 = -~-

-p^zi-
See Art. 181.

If n is less than unity the value of C is infinite. Instead

of the velocity from infinity we use the velocity acquired by the

particle in travelling from rest at the given point P to the origin

under the attraction of the central force. In this case v = when

r = R-, hence (since n<l) (7=--^-^1~n
. The velocity to the

J.
"" Tb

2u
origin (where r - 0) is then given by v2 = =-* '-Rl~n

.

A ~~ TL
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When the force varies as the inverse cube of the distance,

i.e. F= p/r
3
, we notice that the velocity in a circle and the velocity

from infinity are equal. When the force varies as the distance,

i.e. F=fjLr, the velocity in a circle is equal to that to the origin.

When the force varies inversely as the distance, i.e. F=ft/r, both

the velocity from infinity and the velocity to the origin are infinite.

313. The constants. The two constants h and C may be

determined from the initial conditions when these are known.

Let the particle be projected from a point P at an initial distance

R from the origin with a velocity V, let ft be the angle the

direction of projection makes with the initial radius vector. The

tangent at P makes two angles with the radius vector OP, respec-

tively equal to ft and TT ft. When a distinction has to be made

it is usual to take ft equal to the angle behind the radius vector

when P travels along the curve in the positive direction (i.e. the

direction which makes the independent variable increase). The

angle ft is called the angle of projection. We evidently have

h = vp=VRsmft. If F=p/rn, we have ^ =0+^ .

It follows that, if ?i>l and the velocity from infinity is Vlt

C= V*- V*
;

if n < 1, C = F + F = where F is the velocity to the

origin.

We may obtain another interpretation for the constant C.

Selecting any standard distance r = a, the potential energy at a

distance / i*

l "
2

'

See Art. 250. It follows that JC plus -^y-j^ re equal to the

whle energy of the motion. Hew /<// Inking the standard post'

at infinity or the origin according as n is greater or less than unity,

<iy make \C equal to the whole energy.

314. \Vh.-n a point P on the orbit is such that the radius

vector OP is perpendicular to the tangent, the point P is called

When OP is a maximum the apse is sometimes called aw

apocentre, and when n minimum <i pericentrc.
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315. Summary. As the formulae we have arrived at are

the fundamental ones in the theory of central forces, it is useful

to make a short summary before proceeding further. There are

three elements to be considered : (1) the law of force, (2) the

equations of the path, (3) the velocity and time of describing
an arc. Any one of these elements being given, the other two

can be deduced by dynamical considerations. There are therefore

three sets of equations; firstly, equations (4) and (7) connect the

force and path, so that either being known the other can be

deduced
; secondly, equation (6) connects the force and velocity ;

thirdly, equations (2) and (3) connect the path with the motion

in that path.

The equations of one of these sets are mere algebraic trans-

formations of each other, any one being given the others can

be found from it by reasoning which is purely mathematical.

But an equation of one set cannot be deduced from an equation
of another set in this manner, because each set depends on different

dynamical facts.

316. Dimensions. It is important to notice the dimensions

of the various symbols used. The accelerating force F, like that

of gravity, i.e. g, is one dimension in space and 2 in time. We
see this by examining any formula which contains F or g, say
s = %gt

2 or F cos
</>
=

d?s/dt
2
. The force F will in general vary

as some power of the distance from the centre of force, say
F=

fju/r
n where fi is a constant which measures the strength of

the central force. The quantity p Frn is therefore n + 1 dimen-

sions in space and 2 in time. The velocity v dsjdt is one

dimension in space and 1 in time. The constant h = vp is 2

dimensions in space and 1 in time. See Art. 151.

317. Force given, find the orbit. Ex. 1. The force being

F = ^M8
(2a

2u2
+l),

a particle is projected from an initial distance a, with a velocity which is to the

velocity in a circle at the same distance as ^/2 to v/3, the angle of projection being

45. Find the path described.

Putting a= 1/c the differential equation of motion is, by Art. 309,
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When =c, the conditions of the question give v*=$F{c and h = v sin/S/c where

sin2 /3= J, see Arts. 311, 313. We therefore have C=0, h*=fji. The equation now
reduces to

Replacing u by 1/r and measuring 6 from the initial radius OA in such a direction

that r and increase together, this leads to r = a (1 + 0).

From the equation rad0/dt = J, we infer that the time from a distance a to r is

2. A particle moves under the action of a central force M(
S - 1^

2"7 ). the

velocity of projection being (25/*/8a
4
)*, and the angle of projection sin"1

! . Prove

that the polar equation of the path is 3a2= (4r
2 - a3

) (6 + C)
2
. [Coll. Ex. 1892.]

Ex. 3. When the central acceleration is /* (u
3 + a2 5

) and the velocity at the

apsidal distance a is equal to //*/ prove that the orbit is r= a en (mod ^/).

[Coll. Ex. 1897.]

Ex. 4. The central force being F=2^iM8 (l-a
2M2

), the particle is projected

from an apse at a distance a with a velocity *JnIa. Prove that it will be at a

distance r after a time ~-
|a

2
log

T

^ 3 + r,J(r*
- a2

)
I . [Math. Tripos.]

Ex. 5. A particle, acted on by two centres of force both situated at the origin

respectively F=fM3 and F'=fi'u*, is projected from an initial distance a with a

velocity equal to that from infinity, the angle of projection being tan* 1

^2. If

the forces are equal at the point of projection, the path is a0 = (r- a) s/2.

J. A particle, acted on by the central force F= u2/ (0), is initially projected

in any manner. Prove that the radius vector can be expressed as a function of

if the integrals of cos0/(0) and sin0/(0) can be found. [Use the method of

Art. 122.]

318. Orbit given, find tne fore*. Ex. 1. A particle describe* a given
ri /</< nlinnt d'ntri' of force on tlie circumference. It in required to find thf !,;

force and the motion. Newton's problem.

Let be the centre of force, C the centre of the circle, P the particle at the

time t. Let a be the radius of the circle, OP= r. If p = OY be the perpendicular
on the tangent, we have (since the angles OPY, OAP are equal) j>

= r*/2a. Hence

using (7) of Art. 310, we have

If we suppose the magnitude of the force to be given at a unit of distance from

the centre of force we write this in the form F=^, where ft IB a known constant

sometimes called the magnitude or strength of the force. The constant h is then

determined by the equation
8fca= M (8).

The velocity at any point P is found by the normal resolution, Art. 310,

By Art. 312 this velocity is equal to that from infinity.
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To find the time of describing any arc AP, where A is the extremity of the

diameter opposite to the centre of force, we use the equation A=$ht, Art. 306.

Since the area A OP is made up of the triangle OCP and the sector ACP, we have

4^ = 4 = $ a
2
(20 + sin 20),

where 6 = the angle A OP. Substituting for h

./- (20 + sin20) (4).

It appears from this that the particle will arrive at the centre of force after

a finite time obtained by writing 6 = \v. The particle arrives with an infinite

velocity due to the infinite force at that point.

Let the force at all points of space act towards the point and vary as the

inverse fifth power of the distance from 0. It is required to find the necessary and

sufficient condition tliat a particle projected from a given point P in a given direction

PT with a given velocity V may describe a circle passing through O. It is obvious

from (3) that it is necessary that F2 =
/t/r

4 where r=OP; we shall now prove that

this is also sufficient.

Describe the circle which passes through and touches PT at P. The particle

which describes this circle freely satisfies the given conditions at P. If then the

given particle does not also describe the circle we should have two particles

projected from P in the same direction, with equal velocities, acted on by the same

forces, describing different paths; which is impossible; Art. 243.

We notice that a change in the direction of projection PT affects the size of

the circle described, but not the fact that the path is a circle.

Ex. 2. A particle moves in a circle about a centre of force in the circum-

ference, the force being attractive and equal to /j.r
n

. Prove that the resistance of

the medium in which the particle moves is
/j. (n + 5) rn sin 0, where cos = r/2a.

Use the normal and tangential resolutions. [Coll. Ex.]

Ex. 3. A particle of unit mass describes a circle about a given centre of force

situated on the circumference. If the particle at any point P is acted on by an

impulse 2v cos in a direction making an angle tr - with the direction of motion

PT, show that the new orbit is also a circle and prove that the ratio of the radii is

cos 20 + sin 20 cot 0, where is the angle OPT.

Ex. 4. The force being F=/m5
,
a particle when projected from a point P with

an initial velocity F, equal to that from infinity, describes the circle r=2acos0;

investigate the path when the initial velocity is F(l + 7), where y is so small that

its square can be neglected.

Proceeding as in Art. 317, we find

The conditions of the question give

where c = l/2a and 6= a initially. Putting u = csece + crj and neglecting the

squares of 17 and 7, we arrive at

cos2 drj cos* - 2 cos 6 -y y cos4
+

sin2
^ ~shW +

cos4 a sin2 0*
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Each side being a perfect differential, we find

and K is determined from the condition that 17
= when 6 = a\

.'. K= --ycota+ ^ (cota + f a + i sin a cos a).

Putting u = 1/r, we have r=2a cos (1
-

17 cos 0),

r *y
.-. = cos0-Ksin0-7C080 +

'

4 (cos + $0sin0 + sin2 cos 0).

It has been assumed that cos a is not small, the point P must therefore not be

close to the centre of force. It easily follows that when

the distance of the particle from the centre of force is of the order of small

quantities neglected above.

". Any number of particles are projected in all directions from a given

point P each with the velocity from infinity, the central force being F=nu*. Prove

that their locus at any instant is (0 being measured from OP)

(r
! + c2 -2crcoa0)* / (r + c2

)
cos - 2cr--

where OP=c and A is a constant depending on the time elapsed.

319. K.r. 1. A particle describe* an equiangular spiral of angle a under the

action of a centre of force in ttie polet prove that

' '"

where t is the time of describing the arc bounded by the radii vectores r , /,. Con-

versely, a particle being projected from any point in any direction will describe an

equiangular spiral about a centre of force whose law is F^/i/r
3

, provided the

velocity of projection is vV/r, i.e. is equal to that from infinity.

Assuming p=rsina we follow the same line of reasoning as in Ex. 1 of

Art. 318.

_'. A particle acted on by a central force moves in a medium in which the

resistance is *(vel.)
2

, and describes an equiangular spiral, the pole being the

e of force-. at the central force varies as -
5 <~

2*r8eoa
, where a is the

r'

angle of the spiral. [Math. Tripos, I860.]

32O. / ..i-. J /
m=aoosn0 + &8int!0, tin..

' of force tot that

r**

nat the exponents of r are independent of w, (2) that, when m+1 is

positive, the velocity at any point is that due to infinity. Art. 812.

! 'using the law of force and the velocity of projection to be given by these

formulii . 1ft the particle be projected from any point P in any direction PT. The
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four constants 7i
2

, n, a, b are determined by

joined to the conditions that the curve must pass through P and touch PT.

We find that n- and - - p'R*" cot2 have the same sign, where R = OP and
7tt "T" J.

is the angle of projection. When the sign of n2 thus determined becomes

negative or zero the curve obviously changes into

r= a'e
ne + b'e~

n0
,
or rm=a + b"0,

where 4a'6' = a2 - b2 and &" is the limit of In when b is infinite and n zero.

It is useful to notice the following geometrical properties of the curve. If p
be the perpendicular on the tangent, <j>

the angle the radius vector makes with the

tangent
7/1 1 7i

2

tan*=--cot,t*, =_
n

This example includes many interesting cases. Putting m=2, ?i=2, we see

that the lemniscate of Bernoulli could be described about a centre of force in the

node varying as the inverse seventh power of the distance. Putting w= n, we

have the path when the force varies as the inverse (27 + 3)th power and the velocity

is that from infinity. Writing m= ^, n= %, we find the path is a cardioid when

the central force varies as the inverse fourth power and the velocity is that from

infinity. Writing m= l, n=l, the path is a circle described about a centre of force

on the circumference.

321. Ex. 1. A particle describes a circle about a centre of force situated in

its plane. It is required to find the law of force and the motion.

Let be the centre of force, C the centre of the circle, a its radius and CO= c.

Taking the equations of Art. 310, we have

~~

p
'

a
~

r
'

~~

a p'
d

'

Since in a circle 2op=r2 + a2 -c2
,
we can, by substitution, express F and v in

terms of r alone. We have

* 1

where 8a2/t2 =/x and J5= a2 - c2 . When J3 = 0, the law of force reduces to the inverse

fifth power, and the velocity becomes the same as that found in Art. 318.

If this law of force be supposed to hold throughout the plane of the circle, the

values of /t and B are given. In order that the orbit may be a circle it is necessary

that the velocity of projection should satisfy the above value of v, i.e. should be

equal to the velocity from infinity. The direction of projection being also given,

the angular momentum h (Art. 313) is also known. The values of a and c follow

at once from the equations given above and must be real.

Newton, when discussing this problem, supposes that the centre of force lies

inside the circle. It follows that B is positive, and at no point of space can either

the force or velocity be infinite.

When the centre of force is outside the circle, one portion of the orbit is

concave and the other convex to the centre of force. We must therefore suppose
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that the force is attractive in the first and repulsive in the other part. Writing
B= -b2

, we have 6-=c2 -a2
, and therefore b is the length of either of the tangents

drawn from the centre of force to the circle, and the force changes sign through

infinity when the particle passes the circle whose radius is b.

Sylvester, in the Phil. Mag. 1865, points out that the resultant attraction of a

circular plate, whose elements attract according to the law of the inverse fifth

power, at an external point P situated in its plane, is ^ where /* is the mass

of the plate, b its radius and r the distance of P from the centre. The circle

described by P under the attraction of this plate cuts the rim orthogonally.

Let the particle P be constrained to move on a smooth plane under the action

of a centre of force situated at a point C distant b' from the plane, the law of

force being the inverse fifth power. The component of force in the plane is

J>'= ^ , where r is the distance of P from the projection of the centre of

force on the plane. Putting li = b^, it appears from what precedes that, if the

velocity of projection is equal to that from infinity, the path of the particle on the

plane is a circle. The length of the chord bisected by the point is constant for

all the circles and equal to 26'.

Ex. 2. A particle moves under the action of a centre of force F=fM*. Prove

that all the circles which can be described either pass through a fixed point or have

a fixed point for centre.

322. Ex. 1. A particle moves under the action of a centre of force whose

attraction if ?m T~ and tne velocity at any point is equal to that from infinity.

It is required to find the path.

The equation of vis viva (Art. 310) gives

(1).

Since this formula is independent of the path and it is given that r is zero when r

is infinite we see that C= 0. Substituting for v its value hjp, the equation of the

path becomes
r*+B = ip\ i/i

2=M ................................. (2).

The curve required is therefore such that a linear relation exists between p* and

r*. There are several species of carves which possess this property distinguished

from each other by the values of />' and /'.

One such curve is known to be an epicycloid. Supposing the radii of the fixed

and rolling circles to be a and 6, we have at the cusp r=a, p = and at the vertex

p and r are each equal to a + 26. We thus find

The law of force and the conditions of projection being given both B and A9 are

knov force is attractive, B negative, and M/A* less than unity, the path is

an epicycloid, the values of a and 6 being given by (3).

Changing the sign of 6 the epicycloid becomes a hypocycloid and in this case

we learn from (3) that i and n are negative. When therefore the force is repulsive,

and n negative, the path is a hypocycloid.
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The remaining species are more easily separated by putting the equation (2)

into the form p=ip, a result which follows at once from the identity p rdr/dp.

Remembering that p=p + di
pld\fr the differential equation becomes

When i is less than unity or is negative we easily deduce the cycloidal species given

above. If /3
s= 1 -

,
we find

p -L sin /3f +M cos p\{/.

If the axis of x pass through the cusp, we have ^ = when ^=0 and p =
when /3^= TT. Hence L = a + 2b and M= 0.

When t is greater than unity we have the forms

(5),

where a2=i-l and the second form occurs when r = l. Since in any curve the

projection of the radius vector on the tangent is dpjd\f/, we find by elementary

geometry

r2=p2 + [ ) , tan0 = (6),
\ " r / "P

where <p is the angle behind the radius vector. Since = ^-0, we can in this

way express the polar coordinates r and d in terms of the subsidiary angle ^.

Substituting in (2) we find that 4a?LM=B, so that L and M have the same or

opposite signs according as the given quantity B is positive or negative. When
.8= 0, either L or M is zero, and since, by (6), tan0 is then constant the curve is

an equiangular spiral.

To trace the forms of the exponential spirals it is convenient to turn the axis

of x round the origin so that the equation (5) may assume a symmetrical form.

We then have

j^tcp***-*) (7),

where the upper or lower sign is to be taken according as B is positive or negative.

When B is positive there is an apse whose position is found by putting p = r in (2),

whence (i-l)r'
2 = B. When B is negative there is a cusp at the point determined

by ^>
= 0, i.e. at 7

-2= -B. These spirals were first discussed by Puisseux (with a

different object in view) in Liouville's Journal, 1844.

By using a proposition in the theory of attractions we may put some of the

preceding problems in another light. It may be shown that the resultant attraction

of a thin circular ring, whose elements attract according to the law of the inverse

cube, at any point P in the plane of the ring is
a J*!L 8 ,

where
fj,

is the mass of

the ring, c its radius and r the distance of P from the centre. The plus or minus
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hign is to be takeu according as P is without or within the ring, (see Townsend

in the Quarterly Journal, 1879). The path of the particle P moving under the

attraction of the ring has now been found provided the velocity of projection is

equal to that from infinity.

Again, when a particle P is constrained to move on a smooth plane under the

action of a centre of force C situated at a distance c from the plane, the law of

force being the inverse cube, the component of attraction in the plane is
^

,

where r is the distance of P from the projection of the centre of force on the

plane.

K.r. '2. If s be the arc AP of any path measured from a fixed point A, show

that t (i
-

1)1 i differs from the projection of the radius vector OP on the tangent at

P by a constant quantity which is zero when A is an apse.

KJC. 3. Show that the polar area traced out by a radius vector OP is equal to

i times the corresponding polar area of the pedal. Thence show that the time of

describing any arc is given by ht

323. Parallel forces. Kx. 1. .4 pnrtii-l? describes a central conic under the

action of a force F temlimj ulu-nys in a fixed direction. It is required to find F.

Let the conic be referred to conjugate diameters 0.4, OB; the force acting

parallel to BO. Let the angle AOB = u, OA=a', OB-bf
. Let ON=x t

the coordinates of P. Then

The first equation gives x = At, where A is the oblique component of velocity parallel

to x. Hence A is the resultant velocity at B. We then have

V . ...i <&y

The component of velocity at right angles to the force is constant. Representing
this component by V, and remembering that the resultant velocity at B is A, we

= A nin u.

If -i. b are the semi-axes of the conic the expression for the force becomes

/
K>6'4 I-"!

^sin'wy*" a6* y*
It follows that the force r a given direction by which a conic can 6e

de$cribfd var ube of the chord along which the force act*. This

result may also be obtained without difficulty by taking the normal resolution of

foW.

J If the tangent to the conic at P intersect the conjugate diameters in T
and r, r r,,ve that the Telocity at P is r/a*.

14



210 LAW OF THE DIRECT DISTANCE. [CHAP. VI.

Ex. 3. A particle describes the curve y=f(x) freely under the action of a

force F whose direction is parallel to the axis of y; prove F=A~d?yldx-.

Ex. 4. Show that a particle can describe a complete cycloid freely under the

action of a force tending towards the straight line joining the cusps and varying

inversely as the square of the distance. Prove also that the square of the velocity

varies inversely as the distance.

324. A'.r. Two masses M, m are connected by a string which passes through

a hole in a smooth horizontal plane, the mass m hanging vertically. Prove that

M describes on the plane a curve whose differential equation is

Prove also that the tension of the string is
(f) + ^2"3

)- [Coll. Exam.]

Law of the direct distance.

325. A particle is acted on by a centre of force situated in

the origin whose acceleration is F'= pr where r is the radius

vector. It is required to find the possible orbits.

Taking any Cartesian axes, we notice that the resolved parts

of the force in these directions are /JUK and py. The equations of

motion are therefore

dz

xjdt
z = -

fix, d2

y/dt
2 = - py (1).

We observe that though the axes of coordinates are arbitrary,

the equations (1) are independent; one containing only x, the

other only y. We infer that the general principle enunciated for

parabolic motion may also be applied here. The circumstances

of the motion parallel to any fixed direction are independent of
those in other directions and may be deduced from the corresponding

formulas for rectilinear motion.

Supposing that the force is attractive in the standard case,

p is positive and the solutions of (1) are

x = A cos ijfit + A' sin ^pt, y = B cos \/pt + E' sin VM
As there is nothing to prevent us from using oblique axes, let

us take the initial radius vector as the axis of x and let the axis

of y be parallel to the direction of initial motion. If R and V
be the initial distance and velocity, we have when t = 0,

x = R, dx/dt = 0', ?/
= 0, dyjdt=V.

These give R = A, = A', = 5, V



ART. 326.] THK PATH AND MOTION.

The motion is therefore determined by
x = R cos Jp,t, \j

R sin

where V=R'^fi. Eliminating t, we obviously arrive at the

equation of a conic having its centre at the centre of force and

/.'. R' for semi-conjugate diameters.

If p is positive, the centre of force is attractive and the orbit

must be at every point concave to the origin. The orbit is there-

fore an ellipse. If p is negative, the central force repels, and the

t
t being convex to the origin, is a hyperbola. Since the centre

f the conic is always at the centre of force the orbit can be a

parabola only when the centre of force is infinitely distant. If the

t<>rce at the particle is then finite, the coefficient p must be zero.

The finite changes of r as the particle moves about do not affect

the value of pr. The force on the particle is then constant in

magnitude and fixed in direction.

When
fji

is negative, we put /*
= //. The solution of the

differential equations then becomes

x =

\\hriv V=iR'iJit,' and i = \J
- 1. It is evident that iR is real.

326. Since any point of the orbit may be taken as the point

<>t projection, we deduce from the equation V=<JfjLR', that the

P of the ellipse is given by u = *JnR tr

/',' it ten&wmjugato <>f or. If / be the radius vector of the

ni ving particle this equation may also be written va =
//, (a

8 + b- -

when- <i and b are the seini-;i\<'-.

Sine.-
ry>
= h and pR=tib t

we see that the constant // /x // = \ /JL<I
b.

i. principal diameters are taken as the axes of coordinates,

we have # = acos<, ^/
= 6sin<, where ^ is the eccentric angle of

particle. It immediately follows that the particle so moves

that
<t> vW- When < has increased by 2?r the particle has made

a complete circuit and returned to its former position. The

periodic titne is therefore 2ir/^fi. It appears from this that the

ne is independent of all the <-,, millions of projection

f is the satne for nil
fffi/utes. It depends solely on the strength

H of the <

In general the time of describing any arc PP is the difference

"t the eccentric angles at P and 7'' divided by \//i.

142
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When the orbit is a hyperbola we have

x = ia (<*' + e-+') y y = } 6 (e*'
-

<r*'),

where <' is an auxiliary angle. It immediately follows that

(f>'
=

^fj,'t where /*' is positive and equal to p.

327. When the velocity V and angle ft of projection as well

as the initial distance R are given, the semi-axes a, b of the conic

described may be deduced from the equations

These give real values to a2 and b-. The angle which the major
axis makes with the initial distance is given by

cos2 sin2 1

~^ + ~w =&> "
Since V= *Ji*R, it is evident that the problem of finding the

particular conic described when R and V are given is the same

as the geometrical problem of constructing a conic when two semi-

conjugate diameters R, R are given in position and magnitude.
This useful construction is given in most books on geometrical

conies.

328. Referring to the equations (1) of Art. 325 we see that the motion in an

ellipse about a centre of force F=fjar is the resultant of two rectilinear harmonic

oscillations along two arbitrary directions Ox, Oy represented by

X=-px, Y=-ny.
The resultant of any number of rectilinear harmonic oscillations (performed in

equal times) along arbitrary straight lines OA, OB, &c. may be found by resolving

the displacements of each along two arbitrary axes and compounding the sums of

the components. The resulting motion is therefore an elliptic motion with for

centre.

Ex. Investigate the conditions that the resultant of two rectilinear harmonic

oscillations, of equal periods, whose directions make an angle 6, should be (1) a

rectilinear, (2) a circular motion. Prove that in the first case their angles or

phases must be equal; in the second their amplitudes must be equal and their

phases differ by v - 6. The radius is a sin 0.

329. Ex. 1. If OP, OQ are conjugate diameters of an ellipse, prove that the

time from P to Q is one-quarter of the whole periodic time. This follows at once

from the fact that the area POQ is one-quarter of the area of the ellipse.

Ex. 2. Prove that in a hyperbolic orbit the time from the extremity of the

major axis to a point whose distance from that axis is equal to the minor axis is

the same for all hyperbolas.
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Ex. 3. If the circle of curvature at any point P of an ellipse cut the curve

again in Q, and A is the extremity of the major axis nearest to P, prove that the

time from Q to A is three times the time from A to P.

Since = VV- -he theorems in conies which, like this one, are con-

cerned with eccentric angles may at once be translated into dynamics.

Ex. 4. Two tangents TP, TQ are drawn to an ellipse, prove that the velocities

at P and Q are proportional to the lengths of the tangents. [For these tangents

are known to be proportional to the parallel diameters.]

33O. Point to Point. To find the directions in which a purticle must be

projected from a given point P tcith <i </MVH r>locity F, so at to pass through another

point Q.

Let TJ ,
ra be the distances of P, Q from the centre of force O. Let OP be

produced to D where D is such that the velocity V of projection at P is equal to

D

that acquired by a particle starting from rest at D and moving to P under the

action of the centre of force. Let OD = k. Then since V-= M (a
3 + ft

2 -
r^), the

sum of the squares of any two semi-conjugates of the trajectory is k-.

Bisect PQ in .V and let ON=x, NP=NQ= y. From the equation of the

ellipse,

....... (1).

I ./, //,
A are given, this quadratic gives two values of a2

, showing that

there are two directions of projection which satisfy the given conditions.

Let these directions of projection from P intersect ON produced in T and /
,

then since a*=ON . O7\ the quadratic gives the positions of T and T. We also

have Or . OT= *, and \ / v / =r'.

The roots of the quadratic (1) are imaginary if x + y>k. Produce PO to P1

where OP' = OP, the roots of the quadratic are imaginary unless Q lie within the

-e whose foci are P, V and semi-major ax in a' = k. Tki$ cllipte it tkt boundary

U tin- potition* of Q which can be r,-n,-h, ,1 /,// ,

p.irti.'i,- i>rjfctedfrom P with the

It is also the envelope of all the trajectories.

1 If two circles be described having their centres at O and N and their

radii equal to k and
;/ respectively, prove (1) that their radical axis will intersect

ON produced in the middle point 11 of TT; (2) that RT is equal to the product of

the segments of any chord drawn from R to either circle.
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Ex. 2. Show that the greatest range r=PQ on any straight line PQ making a

given angle d with OP=r
l
is determined by (A-

2 - r
l'){r=k

-
)\ cos 6.

Show also that in this case OT= k, and NT=NP=NQ. Thence deduce that

the common tangent at Q to the trajectory and the envelope intersects the direction

of projection from P at right angles in a point T which lies on the circle whose

centre is and radius A.

The first part follows from the focal polar equation of the ellipse and the second

from known geometrical properties of the ellipse.

331. Examples. Ex. 1. If the sun were broken up into an indefinite

number of fragments, uniformly filling the sphere of which the earth's orbit is a

great circle, prove that each would revolve in a year. [Coll. Ex.]

The attractions of a homogeneous solid sphere on the particles composing it

are proportional to their distances from the centre.

Ex. 2. A particle moves in a conic so that the resolved part of the velocity

perpendicular to the focal distance is constant, prove that the force tends to the

centre of the conic. [Math. Tripos.)

Ex. 3. A particle describes an ellipse, the force tending to the centre ; prove
that if the circle of curvature at any point P cut the ellipse in Q, the times of

transit from Q to P through A and P to Q through B are in the same ratio as the

times of transit from A to P and P to B, where A and B are the extremities of the

major and minor axes and P lies between A and B.

Ex. 4. A particle is attracted to a fixed point with a force /u, times its distance

from the point and moves in a medium in which the resistance is A' times the

velocity ; prove that, if the particle is projected with velocity v at a distance a

from the fixed point, the equation of the path when referred to axes along the

initial radius and parallel to the direction of projection is

A tan" 1
2anytC2vx

- a A-//) + n log (.r
2
/

2 + py-lv-
-

A.ry/ar) = 0,

where ?i
2
=At - A2/4. [Coll. Ex. 1887.]

Ex. 5. Three centres of force of equal intensity are situated one at each

corner of a triangle ABC and attract according to the direct distance. A particle

moving under their combined influence describes an ellipse which touches the sides

of the triangle ABC. Prove that the points of contact are the middle points of

the sides, and that the velocities at these points are proportional to the sides.

[Math. Tripos, 1893.]

Ex. 6. If any number of particles be moving in an ellipse about a force in the

centre, and the force suddenly cease to act, show that after the lapse of (l/2?r)th

part of the period of a complete revolution all the particles will be in a similar

concentric and similarly situated ellipse. [Math. Tripos, 1850.]

Ex. 7. A particle moves in an ellipse under a centre of force in the centre.

When the particle arrives at the extremity of the major axis the force ceases to

act until the particle has moved through a distance equal to the semi-minor axis ;

it then acts for a quarter of the periodic time in the ellipse. Prove that if it again
ceases to act for the same time as before, the particle will have arrived at the other

end of the major axis. [Art. 325.] [Math. Tripos, I860.]
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3. An elastic string passes through a smooth straight tube whose length

is the natural length of the string. It is then pulled out equally at both ends

until its length is increased by s/2 times its original length. Two equal perfectly

elastic balls are attached to the extremities and projected with equal velocities at

right angles to the string, and so as to impinge on each other. Prove that the

time of impact is independent of the velocity of projection, and that after impact
each ball will move in a straight line, assuming that the tension of the string is

proportional to the extension throughout the motion. [Math. Tripos, I860.]

.'. A point is moving in an equiangular spiral, its acceleration always

tending to the pole S ; when it arrives at a point P the law of acceleration is

changed to that of the direct distance, the actual acceleration being unaltered.

Prove that the point P will now move in an ellipse whose axes make equal

angles with SP and the tangent to the spiral at P, and that the ratio of these axes

is tan Aa : 1 where a is the angle of the spiral.

10. A series of particles which attract one another with forces varying

directly as the masses and distance are under the attraction of a fixed centre of

force also varying directly as the distance; prove that if they are projected in

parallel directions from points lying on a radius vector passing through the centre

of force with velocities inversely proportional to their distances from the centre of

force, they will at any subsequent time lie on a hyperbola. [Math. Tripos, 1888.]

11. A particle starting from rest at a point A moves under the action of a

centre of force situated at S whose magnitude is equal to /* . (distance from S). It

arrives at A after an interval T and the centre of force is then suddenly transferred

to some other point V without altering its magnitude. If the particle be at a point
/' at the termination of a second interval T equal to the former, prove that the

straight lines .S'.s" and AH bisect each other. If at this instant the centre of force

be suddenly transferred back to its original position S, prove that at the end of a

tiiird interval T the particle will be at S'. If at that instant the centre of force

ceased to act, the particle will describe a path which passes through its original

position .-I.

12. If the central force is attractive and proportional to u9
f(eu + cos 0)

J
,

prove that the orbit is one of the conies given by the equation

(cu + cos0)
2= a + &cos2(0 + a). [Coll. Ex. 1896.]

Putting ' + co0=r, the differential equation of the path becomes the same

as that for a central force varying as the distance 1/f/. The solution is therefore

known to be the form given above.

V particle moves under a central force F =fjM*(l + kt Bm*0)~*. Find

the orbit and interpret the result geometrically. [Math. Tripos.]

14. A smooth horizontal plane revolves with angular velocity u about a

vertical axis to a point of which is attached the end of a weightless string,

extensible according to Hooke's law and of natural length d just sufficient to roach

the plane. The string in stretched and after passing through a small ring at the

point where the axis meets the plane is attached to a particle of mass m which

moves on the plane. Show that, if the mass be initially at rest relative to the

plane, it will describe on the plane a hypocycloid generated by the rolling of a

circle of radios & a {1 -wfmdX- 1
)*! on a circle of radius <i, where a is the initial

extension and X the coefficient of elasticity of the string.

[Math. Tripos, 1887.]
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The accelerating tension is Xr/Mjrf = /xr (say). The path in space is therefore

an ellipse having a and b = wal,Jfj. for semi-axes. To find the path relative to the

rotating plane we apply to the particle a velocity ur transverse to r backwards. If

p' be the perpendicular from the centre on the resultant of v and wr, we have by

taking moments about the centre

(t>
2 - 2vwp + urr-) p"- = (vp

-
ur-)

2
.

Substituting for v3 and vp their values in elliptic motion we find

This is a linear relation between r2 and p''
2 and the curve will be an epicycloid

if the radii of the corresponding circles are real (Art. 322). To find the radius of

the fixed circle, we put p' = Q; this gives the radius r= a. To find the radius

c of the rolling circle, we put p' = r, and r=a + 2c; this gives the required value

of c. If c is negative the curve is a hypocycloid.

Law of the inverse square of the distance.

332. A particle is acted on by a centre offorce situated in the

origin whose acceleration is F pip where u is the reciprocal of the

radius vector. It is required to find the possible orbits.

We have the differential equation (Art. 309)

d*u F _ p
dfr* ~hW~h*"

.-. u =
j- + A cos(0 a),
/z

where A and a are the constants of integration. Comparing this

with the equation of a conic

lu= 1 + ecos(0-a) (2),

where / is the semi-latus rectum, we see that the orbit is a conic

having one focus at the centre offorce. We also have h- pi.

Conversely, if the orbit is a conic with the centre of force in

one focus, the law of force must be the inverse square. To prove

this, we let (2) be the given equation of the orbit; substituting

in the left-hand side of equation (1) we find F=ftw
2
,
where p has

been written for the constant
Jt?/l.

333. The velocity. The relations between the conic and

the force are more easily deduced from the equation

F- h*
d -*
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the force being attractive in the standard case,

<' is the constant of integration. The p and r equation of

an ellipse having a focus S at the origin is

1 ?.i
p*

~
r

'

where / = bz
/a is the semi-latus rectum. Comparing these equations,

we have the standard formulae

We change from the ellipse to the hyperbola by making the

centre C pass through infinity to the other side of the origin S,

we therefore put a' for a
;

also 62 becomes &'-', the semi-latus

rectum remaining positive and equal to b'*/a'. We now have

(B).

In passing from that branch of the hyperbola which is concave

to the centre of force to the convex branch, the radius vector r

hanges sign through infinity from positive to negative. Before

comparing the equation of the orbit with that of the hyperbola
we should write r' for ? in the latter. Also since this bram-h

is convex to the origin the force is repulsive and p is negative, 1 t

u> put /i
= -

ft'. Comparing the formulae

we have

In the parabola, a is infinite, and

^-/^, C0, ua = /i~
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All these formulae may be included in the standard form (A)
of the ellipse if we understand that on the concave branch of the

hyperbola the major axis is by interpretation negative; on the

convex branch, the radius vector being made positive, the major
axis is positive while the semi-latus rectum I and the strength /A

are negative.

334. Construction of the orbit. When the velocity V
and the distance R are known at any point P of the orbit (say,

the initial position), we may determine the curve in the following

manner. Let the force be attractive. The orbit is now concave

to the centre of force and p is positive. Comparing the formulae

(A), (B) and (D) and remembering that the velocity Vl from

infinity to the initial position is given by F1

'2 =
2//,/.R1 (Art. 312),

we see that the orbit is an ellipse, parabola or the concave branch

of a hyperbola according as the velocity is less than, equal to, or

greater ilian that from infinity. We notice that this criterion is

independent of the angle of projection at P. Let the force be

repulsive. Since the path is convex to the centre of force the

orbit is the convex branch of a hyperbola.

335. Having ascertained the nature of the orbit we have

next to determine the lengths of the major axis and latus rectum.

Supposing the ellipse to be the standard case, we have by (A),

1 2 V"- =
-yr . We notice that the length a is independent of the

a H
fj,

angle of projection. If then particles are projectedfrom the same

point urith equal velocities the major axes of the orbits described are

equal.

If /? be the angle of projection (Art. 313) we have p = R sin

and hVp. The constant h and the semi-latus rectum / are

therefore found from h = VR sin 0, li
2 =

pi.

336. The position in space of the major axis may be found in

various ways. Let S be the focus occupied by the centre of force

and A the extremity of the major axis nearest to 8.

We may find 6 from the analytical equation of the curve

l/r=I+e cos 6,

where 6 is the angle the initial radius vector SP makes with 8A.
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We may also use a geometrical construction. The focus S
and the tangent PT at P being known, we can draw a straight

line PHso that S'P, PH make equal angles with PT, the direction

of PH depending on whether the curve is an ellipse or hyperbola.

If the point H is then determined so that SP +PH = 2'/, where

a has been already found, it is clear that H is the empty focu-

If the curve is a hyperbola, these lengths (as already explained)

must have their proper signs. The position of the major a.xi-

is then found by joining S and H, and a being known the

eccentricity e is equal to SH/2a.

337. K.r. 1. The initial distance of a particle from the centre of force

being r, and the initial radial and transverse velocities being J'j
and !', prove

that the latus rectum 21 and the angle 8 which the radius vector r makes

I y 2 ]- j-
with the major axis are given by -5 = 2

, tan0= .

/..r. 2. Prove that there are two directions in which a particle can be projected

from a given point P with a given velocity V, so that the line of apses may have

a given direction Sx in space, and find a geometrical construction for these

directions.

Since I" is given, a is known. With centre P and radius 2a-r describe a

circle cutting Sx in H, II'. The required directions bisect externally the angles

>/'//. .S'P/f.

Let ft be either of the angles the direction of projection at P makes with s/',

Ait. :ii:*. The quadratic giving the two values of tan /3 is

where is the angle PSx. This follows from Ex. 1 by writing J',= I

!*._.= Fsin/3. The quadratic may also be written in the form

:*. Three focal radii RIP of an elliptic orbit and the angled

between them are given. Show that the ellipticity may be found from the equation

6A=aA', where A is the area Pyil, A' the area of a triangle whose sides are

2SQ* . .S/?* sin } QSIl and two similar expressions. [Math. Tripos, 1893.]

Let / ' the points on the auxiliary circle which correspond to P, (,'. /.'.

We first find by elementary oonics the length of the side Q'lt' in terms of

and the contained angle. The result shows that the side Q'K' is equal to the

corresponding side of the triangle A' after multiple-ntion by i>. Since the areas

of the triangles I /," are known to be in the ratio ft-'n, the result follows

at once,

I. Two particles P, Q describe the same orbit about a centre of force O.

Prove that throughout the motion the area contained by the radii vectores OP, OQ
is constant.
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Thence deduce that if a ring of meteors (not attracting each other) describe a

closed orbit, the angular distance between consecutive meteors varies inversely as

the square of their distance from 0.

Ex. 5. Two particles P, Q describe adjacent elliptic orbits of small eccentricity

in equal times, the centre of force being in the focus and the major axes coincident

in direction. Supposing the particles to be simultaneously at corresponding

apses, prove that the angle ^ which PQ makes with the line of apses is given by
cot ^= - 3 cosec 2nt + cot 2;if, and find when ^ is a maximum.

338. Elements of an orbit. To fix the position in space

of an elliptic orbit described about a focus we must know the

values of six constants, called the elements of the orbit.

These are (1) the angle which the radius vector from the

given focus to the nearer extremity of the major axis makes with

some determinate line in the plane of the orbit, the angle being
measured in the positive direction

; (2) the length of the major
axis

; (3) the eccentricity ; (4) a constant usually called the epoch
to fix the longitude of the particle at the time t = 0. This con-

stant will be considered later on.

To determine the plane of the orbit we require two more

constants. Taking the focus as origin, let some rectangular axes

be given in position. Let the plane of the orbit intersect the

plane of xy in the straight line N'SN. This line is called the

line of nodes, and that node at which the particle passes to the

positive side of the plane of xy is called the ascending node. We
require (5) the angle the radius vector to the ascending node

makes with the axis of x, and (6) the inclination of the plane of

the orbit to the plane of xy.

339. Point to Point. To project a particle with a given

velocity V from a given point P so that it shall pass through
another given point Q.

11

<2
N

Let rlt r.2 be the distances >SP, SQ. The velocity atP being given ,

/2 1\
the major axis 2a is also known from the formula V- u,

(
- -}.

\r, a)
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With centres P and Q, describe two circles of radii 2a rlt 2a ra ;

these intersect in two points H, H'. Either of these may be the

empty focus. The three sides of the equal triangles PQH, PQH'
are t knn-wn.

There are two directions of projection which satisfy the given
conditions. These directions are the bisectors of the supplements
of the angles SPH, SPH'. Let ft, P be the angles of projection

at P (measured behind the radius vector SP, see Art. 313), then

ft + ff is equal to the supplement of SPQ, and {3 ft' is equal to

th- kimwn angle HPQ.
The range PQ on a given straight line is the greatest possible

when //, //' coincide and lie on the straight line PQ. We then

have

PQ = PH+QH=4a- r,
-

r,.

This equation requires that the semi-major axis should be one-

quarter of the perimeter of the triangle SPQ.

Since two consecutive trajectories whose foci are in the neigh-
bourhood of PQ intersect in Q, the locus of Q as the range PQ
turns round P is the envelope of all trajectoriesfrom a given point
P with a given velocity. Since PQ 4- QS = 4a ?, this locus is

another ellipse having its foci at P and S. Each trajectory touches

the enveloping ellipse in the point where the straight line joining
P to the empty focus of the trajectory cuts either curve.

34O. Ex. 1. Prove that the semi-major axis a', the eccentricity e' and the

semi-lulus rectum i of the enveloping ellipse are given by

2a' = 4a-r,, e'=^l- , /^= 2a (2a -r,).

I, If the variation of gravity is taken account of and the resistance of

the air neglected, prove that the least velocity with which a shot could be projected

from the pole so as to meet the earth's surface at the equator is about 4 J miles per

second, and that the angle of elevation is 22$. [Coll. Ex. 1892.]

! t a particle when projected from /', passes through two other points

^V J*3 prove that the semi-latus rectum I is given by either of the equalities

/A = r
l
A

l
+ r,4, + r

f^,=r 2r,rsr, sin a, sin 04 sin a,,

\vh< re r
v , r,, r,, are the <1

/',, ST3 , S/', ; A lt /(,, A 9 are the areas of the

tn.mules PjSF,, /V a
i <h a* the angles at the focus 5 and A it the

area of the triangle /',/'a /'3 . Prove also that the eccentricity is given by

2M.seca I, sec a, sec a, cos aj.

341 Time of describing any arc. The time of describing

th- whole ellipse, usually called the periodic time, can be deduced
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at once from the formula A =
%ht, (Art. 306). Putting A =7rab

<2

and h- = pbr/a, (Art. 332), we find that the periodic time = . a*.

It appears from this that the period is independent of the

minor axis and depends only on the strength /z,
of the centre of

force and on the length of the major axis.

If n be the mean angular velocity in the orbit, the mean being
taken with regard to time, the period is 27r/n. It follows that

_/*

342. To find the time of describing any arc AP of an elliptic

orbit.

Let S be the focus occupied by the centre of force, AQA' the

auxiliary circle and QPN an ordinate. If A is the extremity of

the major axis nearest to S, the angle ASP is called the true

anomaly and is sometimes represented by the letter v, i.e. the

angle ASP = v. The angle ACQ is the eccentric angle of P and

in astronomy is called the eccentric anomaly ;
it is usually repre-

sented by u, i.e. the angle ACQ = u. Thus the true anomaly v is

measured at the centre of force, the eccentric anomaly u at the

centre of the orbit.

When the particle is a planet the extremities A, A' of the

major axis are called the perihelion and aphelion', when the particle

is the moon the same points are called perigee and apogee. They
are also called the apses, Art. 314.

Representing the time of describing the arc AP by t, and the

mean angular velocity of the particle by n, the product nt is

called the mean anomaly, and is generally represented by m, i.e.

m = nt. To represent this angle geometrically we let a second

particle describe a circle, having its centre at S, with a uniform

motion in the same period as the given particle describes the

ellipse. The actual angular velocity of this particle is therefore

n. If A and Q' are its positions at the times t = and t = t, the

angle ASQ' = nt.

The true and mean anomalies are the important angles in the

theory of elliptic motion. The eccentric anomaly is introduced

as an auxiliary angle because, by its help, very simple expressions

can be found for the other two anomalies and for the radius vector.
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The difference between the true and the mean anomaly, or

' - in. is called the equation of the centre, and is positive from the

nearer apse to the farther and negative from the farther to the

nearer.

Using the geometrical theorem that the ratio of the area ASP
of the ellipse to the corresponding area ASQ of the circle is

constant for all positions of P and equal to 6/a, we have, if

A = area ASP,

A =
^ (area ACQ - area SCQ)

=
.
-

(cPu a?e sin "
).

-" ~
ff C

Since A =
$ht, h- fib*/a, n* = P/*' tms gives

nt = u e sin a (A).

\Y. may obtain this relation between u and t without using any figure. Taking
the focus ,S for origin, we have

x' = -ae + a cos M, y'

Substituting for x' and \f we obtain f in terms of it by an easy integration.

343. To find the relation between the true and eccentric

anomalies we notice that CS = ae, ON =x, SP = r= a ex.

a ex

a ex r

K- in. inhering that x = a cos u, these give at once

// /; r

V u 'l^VCl +e)sm2, y ^
C08

2

Eliminating u between (A) and (B) we have

xprewion for the time in terms of the longitude 6 may also be found by

ration. Since rMf/dlAt we have < =
*
where /=1/^ But it
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is known that //^ =
^ri) tan

~ l

(V/T1
taD

I)
' By differentiatinK

this with regard to /, the value of t follows? at once.

Ex. Prove that r = N/(a/), and r - = an.

344. Ex. 1. Prove that the mean distance of a planet from the sun is a or

a(l + ^c
2

) according as the mean is taken with reference to the longitude or the

time. [These means are respectively jYrf0/27r and jrdtjT, where T is the periodic

time.]

Ex. 2. Prove that the mean value of rn with regard to time for a planet is

a* (f* _m+3/2 ,/n+i

^TT) (-/)* d/i*
I/

1
-!!-1*, where ^=1 /e and L <"> = i 2 3--

Ex. 3. The earth's orbit being regarded as a circle, prove that a comet,

describing a parabolic orbit in the same plane, cannot remain within the circum-

ference of the earth's orbit longer than the (2/37r)th part of a year. [Coll. Ex.]

Ex. 4. A particle is projected from the earth's surface so as to describe a

portion of an ellipse whose major axis is 1 times the earth's radius. If the

direction of projection make an angle of 30 with the vertical, prove that the time

of flight is | (3a/0)*{ tan"
1

^6+^/3}- where a is the earth's radius.

[Coll. Ex. 1895.]

345. Orbits of small eccentricity. The equations (A) and (B) of Arts. 342,

343 determine the tune of describing any given angle v in an elliptic orbit of any

eccentricity, the equation (B) giving u when v is known while the equation (A) then

determines t. The converse problem of finding the polar coordinates r and v

when t is given is usually called Kepler's problem. One solution by which u and v

are expressed in terms of t by series arranged in ascending powers of e will be

presently considered. It is enough here to notice that in a planetary orbit, where

e is small, the value of u when t is given can be found by successive approxima-
tion. The value of v then follows from (B) by using the trigonometrical tables.

346. To solve (f>(u)=u-esmu-m0 by Newton's rule, when TO, i.e. nt, is

given.

Supposing u
l , w2 to be two successive approximations to the value of u, that

rule gives

where m
l
= U

L
- e sin MJ . To find a first approximation we notice that u lies

between m and me, the upper or lower sign being taken according as m is

<?r or >. We choose some value of u, lying between these limits, which is an

integer number of minutes so that its trigonometrical functions can be found from

the tables without interpolation. By Fourier's addition to Newton's rule this first

approximation should be such that
<f> (u) and <f>" (u) have the same sign.

Substituting this first approximation for u
l , the formula gives a second approxi-

mation. Substituting again this second approximation for MJ , we obtain a third,

and so on. When e is very small the first computed value of the denominator is

sometimes sufficiently accurate for all the approximations required. See Encke,

Berliner Astronomisches Jahrbuch, 1838. Gauss, Theoria Motus &c., translated by
C. H. Davis. Adams's Collected Works, vol. i. p. 289.
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Ex. Prove that if we choose u
l
= m + e as the first approximation, the error of

the value of u,
2 is of the order *.

847. Kx. 1. Leverrier'g rule. If terms of the order e* can be neglected,

prove

M = gt |

asinm 1 / gsinm V
1-ecosm 2\l-cosm/

Glaisher remarks that if we replace the third term by -
(e sin m)

3
(l-ecos m)~V

the formula is correct when terms of the order e5 are neglected. He also gives a

series for u correct up to es . Monthly Notices of the Astronomical Society, 1877.

-'. Prove that cot u = cot in - --: where

Putting it = m + e on the right-hand side of the first equation we obtain an

approximation for cot u whose error is of the order e3 . This is Zenger's solution

of Kepler's problem. He has tabulated the values of f(e) for the eight principal

planets. Some improvements of the method have been suggested by J. C. Adams.

Both papers are to be found in the Monthly Notices of the Astronomical Society,

1882, vol. XLII. p. 446, vol. XLIII. p. 47.

'i. Prove the following graphical solution of Kepler's problem. Construct

the curve of sines y = B'mx, measure a distance OM=m along the axis of x and
draw J/P making the angle PMx equal to cot"1 e. If MP cut the curve in P, the

abscissa of P is the value of n.

This method was described by J. C. Adams at the meeting of the B. Association

in 1849. It is also given by See in the Astronomical Notices, 1895, who also refers

to Klinkerfues and Dubois. Another graphical solution, using a trochoid, is given

by Plummer, Agronomical Notices, 1895, 1896.

i. The equation u-esinu =w has only one real value of u when m

This follows from the graphical construction. If the ordinate J/P could cut

the curve in a second point Q, move the straight line PQ parallel to itself until P
and Q coincide. We should then have a tangent to the curve making an angle
tan~' \le with the axis of x. But if e < 1 this is impossible, for in the curve of

sines the greatest value of the angle is 45.

'). By using Lagrange's theorem we may expand /(u) in a aeries of

ascending powers of the eccentricity, the coefficients being functions of m. Prove

that if the form of the function /(u) be so chosen that the coefficient of e9 is zero,

we obtain the series

cot u = cot m - e cosec m + $
* sin m + <fcc.,

which takes a very simple form, when the cubes of e can be neglected. This

equation is due to Bob. Bryant, ^fronomtVal Notices, 1886.

6. Prove that when e can be neglected

aini(u-m) = iesinm+ie'tin9iR+ J,e*nn&m+&o. [R. Bryant.)

7 If V be the longitude of a planet seen from the empty focus and

measured from an apse, prove that

the error being of the order e*. It follows that the angular velocity round the

empty focus is very nearly constant.

R. D. 15
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348. We may apply the method of Art. 342 to find the time of describing

an arc of the concave branch of the hyperbola. Taking the focus as origin the

equation of a hyperbola may be written

x' = ae-
\ (/"+/-), y'=|(r-/-

M
).

where u is an auxiliary quantity and / a constant which will be immediately
chosen to be the base of the Napierian logarithms ;

.-. hdt= 2dA = x'dy'-y'dx
f= ab (/"+/-")- l du.

Since &a=^&2
/a we have, putting ji/u

3=n2
,

nt= -u + esirihu .................................... (A).

Again, as in Art. 343, we have x=CN=(fu
+f~

u
);

where v= L ASP. If we eliminate u, we have

To find a geometrical interpretation for the auxiliary quantity u, let us

describe a rectangular hyperbola having the same major axis and produce the

ordinate NP to cut the rectangular hyperbola in Q. Then tan QCN=tanh u.

Ex. A particle describes the convex branch of the hyperbola, and /tt=
-
p! is

negative. Prove
v /e -1 1 . u

n*=M + smhu, tan - =^ tanh -
,

where v=ASP, /x'/a
3= 2

.

349. The time in a parabolic orbit may be more easily found

by using the equation r2d6 = hdt.

Putting l/r
= 1 + cos v where I is the semi-latus rectum, and

A2 = pi, we have

dv

This formula gives the time t of describing the true anomaly
v = ASP.

If c be the radius of the earth's orbit, and p the perihelion

distance of the particle expressed as a fraction of c, we have

I = 2pc. To eliminate p, let T = 2?r \/c
3

//* ^e ^ne length of a year.

Then

If we write T= 365*256 this gives t in days.
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When a formula like this has to be frequently used we

construct a table to save the continual repetition of the same

arithmetical work. Let the values of (tan Jv + J tan'^vj be

calculated for values of v from to 180, with differences for

interpolation. When p is known for any comet moving in a

parabolic orbit, the table can be used with equal ease to find the

time when the true anomaly is given or the true anomaly when

the time is known.

350. Euler's theorem. A particle describes a parabola
under the action of a centre of force in the focus S. It is required

to prove that the time of describing an arc PP' is given by

6 *Jpt
=

(r + r' + A;)*
-

(r + r' - A;)
1

,

where r,r are the focal distances of P,P' and k is the chordjoining

P, P7

.

Let x, y\ x'
t y be the coordinates of P, P', then since y

3

As we wish to make the right-hand side a perfect square, we put

y + y'
= 4<a tan 0, y - y = 4a tan

<f>
............ (1).

We shall suppose that in the standard case y is positive and y'

numerically less than y ;
then 6 and

</>
are positive,

/. k = 4(/ tan
</>

sec 6........................ (2).

Also / + r' = 2a + x + x = 2a (sec
2^ -I- tan'<f>) ;

.'. r + r 4- k = 2a (sec 6 + tan
</>)')

7
- + r

' - k = 2a (sec 6
- tan

</>)>}

;

= (2a)
f
{(sec 6 + tan <)'

-
(sec 6 - tan

= 2 (2a)* (34-3 tan*6 4- tan*<) tan
<f>.

Drawing the ordinates PN, P*N'
t we see that

area PSP -APN- APN' + SPN' - SPN

'-y'') + |(y-y')
- |a

f tan
<f> (3 tan'0 + tan'<J> + 3).

e the area P&F- JA< = JVrJ^i t the result to be proved
follows at once.

15-2
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The arc PP' gradually increases as P' moves towards and past
the apse. The quantity r + r' k decreases and vanishes when
the chord passes through the focus. To determine whether the

radical changes sign we notice that this can happen only when it

vanishes. We can therefore without loss of generality so move

the points P, P', that, when the chord crosses the focus, PP' is a

double ordinate. We then have

6 VM* = (2r + 2y)
-

<2r
-

2y)
} = {(2a + y) (2a

-
y))/(2<i)'.

Comparing this with the ordinary parabolic expression for twice

the area ASP it is evident that the last term should change sign

where y increases past 2a and that the double sign should be a

minus. The second radical in Eulers equation must be taken

positively when the angle PSP' is greater than 180.

351. Ex. 1. If the ordinate P'N' cut the parabola again in Q'; prove that

6, are the acute angles made by the chords PP', PQ' with the axis of y.

Ex. 2. Show that there are two parabolas which can pass through the given

points P, P', and have the same focus. Show also that in using Euler's theorem

to find the time P to P7

,
the second radical has opposite signs in the two paths.

To find the parabolas we describe two circles, centres P, P' and radii SP, SP
1

.

These circles intersect in S and the two real common tangents are the directrices.

These tangents intersect on PP' and make equal angles with it on opposite sides.

The concavities of the parabolas are in opposite directions, and the angles

described are PSP' and 360 - PSP'. If then one angle is greater than 180, the

other must be less.

Ex. 3. A parabolic path is described about the focus. Show that the squares

of the times of describing arcs cut off by focal chords are proportional to the

cubes of the chords.

362. Lambert's Theorem*. If t is the time of describing any arc PP of an

ellipse, and k is the chord of the arc, then

nt= (0
- sin 0)

-
(0'

- sin 0'),

where sin \ = \ , sin \ 0'= \ ^
-

.......... (A).

Let M, u' be the eccentric anomalies of P, P',

.-. kz= a2
(cos u - cos w')

2 + a2
(1
- e2

) (sin u - sin u')
2

(1),

* This proof of Lambert's theorem is due to J. C. Adams, British Association

Report, 1877, or Collected Works, p. 410. He also gives the corresponding theorem

for the hyperbola, using hyperbolic sines. In the Astronomical Notices, vol. xxrx.,

1869, Cayley gives a discussion of the signs of the angles 0, 0'. The theorem for

the parabola was discovered by Euler (Miscell. Berolin. t. vn.), but the extension

to the other conic sections is due to Lambert.
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a -ae cos it - oicosu'

= 2a{l-co8i(u+u')co8i(u-u')} ........................ (2),

nt = n- n' -e (sin u - sin
ti')

= M-u'-2cos$(u + u')8in$(H-H') ........................ (3).

Hence we see that if a, and therefore also , are given, then ; + /', k, and t are

functions of the two quantities u - i/', and e cos (u+ u'). Let

u - '= 2a, co8(u + u')
= cos/3 ........................ (4).

.-. & = 2asinasin/3 ................................. (5),

r + r' + * = 2a{l-cos(/9 + a)} ........................... (6),

r + r'-fe= 2a{l-co803-a)} ........................... (7),

nt= 2a-2smacos/3 ............................. (8).

If we put ft + a= 0, /3-a= 0', the equations (6) and (7) lead to the expressions

for sin 0, sin 0" given above, while (8) when put into the form

gives at once the required value of nt.

353. Let us trace the values of 0, 0' as the point P travels round the ellipse

in the positive direction beginning at a fixed point P. We suppose that u increases

from u' to 2-r + u'.

The positive sign has been given to the square root k. Since k can vanish

only when P coincides with P', and a begins positively, we see that both a and /3

lie between and T for all positions of P. The latter is also restricted to lie

between cos-1 * and ir-cos" 1
*.

We have by differentiating (4)

d<f>'
= dp - da= -

i du {
1 - e cosec ft sin (u + u') }

.

Since sin2 /9
= es siu- J (u + u') + !-<' and g2<1 ifc follows that <ty is always

positive and d<f>' always negative. If /3 be the least value of /3 which satisfies

cos /3
= e cos ', continually increases from /S to 2r-/3 and 0' decreases from

When = T, r + r' + fc= 4a, and the chord P'P passes through the empty
focus //. Let it cut the ellipse in Q. It follows that is less or greater than T

according as P lies in the arc P'Q or -

When 0' = 0, r-i-r'-A- = 0, and the chord P'P passes through the centre of

force S. Let it cut the ellipse in R. Then 0' is positive or negative according as

P lies in the arc PR or 7, /

The values of 0, 0' are determined by the radicals (A). Each of these gives more

than one value of the angle, thus may be greater or less than w and 0' may be

positive or negative. This ambiguity disappears (as explained above) when the

position of P on the ellipse is known. Thus sin and sin 0' have the same sign

when the two foci are on the same side of the chord PP' and opposite signs when

the chord passes between the foci.

364. / 1 Prove that the time t of describing an arc P'P of a hyperbola is

given by
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and k is the chord of the arc. [Adams.)

Ex. 2. The length of the major axis being given, two ellipses can be drawn

through the given points P
t
P' and having one focus at the centre of force.

Prove that the times of describing these arcs, as given by Lambert's theorem, are

in general unequal.

To find the ellipses we describe two circles with the centres at P, P' and the

radii equal to 2a - SP, and 2a - SP'. These intersect in two points H, H', either

of which may be the empty focus, and these lie on opposite sides of the chord PP'.

355. Two centres of force. Ex. 1. An ellipse is described under the

action of two centres of force, one in each focus. If these forces are F
l (rl )

and

.F, (r,), prove that - ^- (r1
8F

1)=A, ^- (rJFJ. If one force follow the Newtonian
*j arj 7*0 tt7*2

law, prove that the other must do so also.

These results follow from the normal and tangential resolutions.

Ex. 2. A particle describes an elliptic orbit under the influence of two equal

forces, one directed to each focus. Show that the force varies inversely as the

product of the distances of the particle from the foci. [Coll. Ex.]

Ex. 3. A particle describes an ellipse under two forces tending to the foci,

which are one to another at any point inversely as the focal distances
; prove that

the velocity varies as the perpendicular from the centre on the tangent, and that

the periodic time is ir (a
2 + b2)lkab, ka, kb being the velocities at the extremities of

the axes. [Coll. Ex.]

Ex. 4. A particle describes an ellipse under the simultaneous action of two

centres of force situated in the two foci and each varying as (distance)"
2

. Prove

that the relation between the time and the eccentric anomaly is

= __
dt) a3

(l-ecosw)
2 a3 (1 + ecosw)

2
'

[Cayley, Math. Messenger, 1871.J

The invwse cube and the inverse nth
powers of the distance.

356. The law of the inverse cube. A particle projected

in any given manner describes an orbit about a centre offorce whose

attraction varies as the inverse cube of the distance. It is required

to find the motion*.

* The orbits when the force F=nu3 were first completely discussed by Cotes in

the Harmonia Mensurarum (1722) and the curves have consequently been called

Cotes' spirals. The motion for F=/j.u
n when the velocity is equal to that from

infinity is generally given in treatises on this subject. The paths for several other

laws of force are considered by Legendre (The"orie des Fonctions Elliptiques, 1825),

and by Stader (Crelle, 1852) ; see also Cayley's Report to the British Association*

1863. Some special paths when F=/Mn
, for integer values of n from w= 4 to-

7i= 9, are discussed by Greenhill (Proceedings of the Mathematical Society, 1888),

one case when ?i = 5, being given in Tait and Steele's Dynamics.
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Let attraction be taken as the standard case and let the

accelerating force be F=pu*. We have

d*u F n

The solution depends on the sign of the coefficient of u. Let V
be the velocity of the particle at any point of its path (say the

point of projection), y9 the angle and R the distance of projection,

then h = VRsmp', (Art. 313). Let Vl be the velocity from in-

finity, then V? = p,IRr. It follows that h* is > or < p according
I
r
siny8 is > or <Vl \

i.e. the coefficient of u is positive or

negative according as the transverse velocity at any point is

greater or less than the velocity from infinity. If the force is

repulsive the coefficient is always positive.

Case 1. Let A2
>/*, we put 1 /i/A

2 = ?i
2
,
then n<l or >1

according as the force is attractive or repulsive. The equation of

the path is (Art. 119)
u = a cos n (6 a).

The curve consists of a series of branches tending to asymptotes,
each of which makes an angle TT/H with the next.

When the curve is given the motion may be deduced from the

following relations (Art. 306),

/i
a =

j-^-f , Va =
fJL (j^-^i

+ U*\ .

Also by integrating dO/dt = hu*, and putting a = 1/6, we find that

the time of describing the angle 6 = a to 0, i.e. r = 6 to r, is given by

//i \ faU Io hPnH*
tann(0 a)= , s , r1 69 = rj-.

357. Case 2. Let /A be positive and > A9
,
we put 1 - /A/A*

= - n*.

The equation of the path is then ?t = ^en* + Be'1
*. The values

of the constants A, B are to be deduced from the initial values of

" and du/dd. Two cases therefore arise, according as A and B
have the same or opposite signs. In the former case, u cannot

vanish and therefore the orbit has no branches which go to in-

finity: in the latter case there is an asymptote. If we write

=
0, + a and choose a so thai Af* T Ber**t we may reduce
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the equation to one of the three standard forms

u = e^ e-"** u =

where 2/ia = log( B/A), a 2\/(+ AB), the upper or lower signs

being taken according as A, B have the same or opposite signs.

The third case occurs when 5 = 0; the orbit is then the equi-

angular spiral already considered in Art. 319.

When the curve is given the motion may be deduced from the

following relations

where C is determined by making t vanish when r has its initial

value and b I/a.

When A and B have the same sign the two branches beginning
at the point ^ = 0, i.e. = a, wind symmetrically round the origin

in opposite directions. When A and B have opposite signs the

two branches begin at opposite ends of an asymptote, whose

distance from the origin is y = 1/an, and then wind round the

origin. As the particle approaches the centre of force, the convo-

lutions of either branch become more and more nearly those of

an equiangular spiral whose angle is given by cot < = n, the

upper or lower sign being taken according as 6 = oo . The

particle arrives at the pole with an infinite velocity at the end

of a finite time.

358. Case 3. Let p be positive and = h?. The orbit is

u = a(6 a).

When the path is known the motion is given by
hz =

fjL)
v* = p (u* + a2

), t^/jL
= br

}

where t is the time from a distance r to the centre of force and

b = l/a. We notice that the radial velocity is constant.
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Beginning at the opposite extremities of an asymptote the

branches wind round the origin and ultimately when 6

cut the radius vector at right angles. If OZ is drawn perpen-

dicular to the radius vector OP to meet the tangent at P in Z,

we may show that OZ is constant and equal to I/a.

350. Ex. The motion for a force F=f(u) being known, show how to deduce

that for a force F=f(u) + fiu
3 and give a geometrical interpretation. [Newton.]

The differential equations are

d6
.

These may be reduced to the forms used when F=f(u) by writing c0= 0',

ch = h', where c2= 1 - /*/fc
2

.

To construct the path u =
<f> (c0), when u= ($) is known, we make the axis of x

together with the latter curve revolve round the centre of force with an angular

velocity dw/df , where cd = 6 - u. The axis of x therefore advances or regredes

according as c is less or greater than unity.

36O. Law of the inverse nib. power. It is required to find the path of a

particle when the central force F=nu*. See Art. 320. We have

d?u F

except when n = l, for then the right-hand side takes a logarithmic form.

The integration of this equation can be reduced to elementary forms when

C = 0; this requires that n>l for otherwise r2 would be negative. The equation

then shows that at even/ point of the orbit the velocity /.s equal t<> that from infinity,

,12.

If V be the velocity, R and ft the distance and angle of projection, we have

F= 2*
n-

2M

h*(n-l)~ sin*/S

tJ{(c^*-lp
T^ (8) '

where the upper or lower sign is to be taken according as dujdff is initially negative

or positive, i.e. according as the angle ft is acute or obtuse.

To integrate this put cu = z" where x is to be chosen to suit our convenience.

Taking the logarithmic differential we find du/u ~ * <Lr/j, and the integral equation

(3) becomes
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We now see that if we put * (n
-

3) = - 2 the integration can be effected at once,

but this supposition is impossible if n = 3. We find

ti-3

2

Conversely, when the path is given, we have

It appears that the orbit takes different forms according as n> or <3. In the

former case the curve has a series of loops with the origin for the common node

and r=c for the maximum radius vector. In the latter case the curve has infinite

branches, and r=c for the minimum radius vector.

361. If the force is repulsive, we write F= - n'u
n

. We then have

If (7=0, we must have n<l. The velocity at every point is equal to that from
rest at the centre of force. Proceeding as before, we have

= COs' (0-a).

362. Ex. The law of attraction being F=fMn
, show that the time t of

describing a loop is

where the limits are = to 7r/(w-3) and 2 (n-3)#= n + l, (n-3)g = (w-l). The

integrations can be effected when n - 3= =fc 4/i and q -p = i where i is any integer.

363. Examples. Ex. 1. Prove the following geometrical properties of the

curve (r/c)
m=cos7M0 (Art. 320),

where # is the angle the radius vector makes with the tangent, and r', 6' are the

coordinates of a point on the pedal curve.

Since equation (1) of Art. 360 becomes P2=^~
2
^r"-1 when (7=0, the

second of these geometrical results enables us to write down the equation of the

required path and thus to avoid the integration of (3).

Ex. 2. A perpendicular OF is drawn from the origin on the tangent at P
to the lemniscate r2= a2 cos 20. If the locus of 1" be described by a particle under

the action of a central force tending to 0, prove that this force varies inversely as

07 ]3
/3. [Coll. Ex.]

Ex. 3. A particle is describing the curve (r/c)
m= cos md under the action of

the central force .F=^un , where w=(n-3). Prove that, if the velocity at the
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point = a ia suddenly increased in the ratio 1 to 1 + y where y is very small, the

subsequent path is

(r/c)
m= cos me {1

-

i+

;costn0)"'% cotm0 y _ /"(cos m0)'

(sin m&)
s ~^ m 2m4*

/ (sin /H0)-

(cosma)
m

where the limits are 0=0 to a.

Substitute r/c = (cos ruff) + f, in the differential equation of the path, Art. 309,

and neglect the squares of .

364. The inverse fifth power. The equation (1), Art. 360, has the form

M A .
C

can be reduced to elliptic integrals as explained in Cayley's Elliptic

Functions, Art. 400, or Greenhill, The Kllii>tic Function*, Art. 70.

The integration can be effected in two cases : (1) when velocity of projection is

equal to that from infinity, and (2) when the initial conditions are such that

h* = 2fjiC. In the latter case the right-hand side of (1) is a perfect square.

Ex. 1. Prove that the integration when / 4
=2)uC7 leads to the curves

tanh (0/^2) = r/c or c/r, which have a common asymptotic circle r=c where

c = vV/^. Prove also that the velocity V of projection is given (Art. 313) by

F* sin* /3
= 2 1"-

{
1 N/(l

- sin4
ft) } ,

where I" is the velocity from rest at infinity, and the upper or lower sign is to be

taken according as the path is outside or inside the asymptotic circle.

2. Prove that, if the central force F=/xu5
, the inverse of any path with

regard to the origin is another possible path provided the total energy of the

motion exceed the potential energy at infinity by a positive constant E reckoned

per unit mass and also that for the two paths Eh'4 = J

Prove that when h l - lu/v>0 the path is of the form r = asn (A* 7-= ^-}
\ V(l + **)/

modulus k or the inverse form. [Math. Tripos, 1894.]

According to the notation of Art. 313, 2 = C.

366. Tbe inverse fourth power. The equation (1) of Art. 860 is

f'
/l<V- 2 '4

/

r

tt-!*\.+Uv 9&\ *c

This cubic can always be written in the form

and the integration can be reduced to forms similar to those in Art. 364 by writing

u + a = f*.

The integration can be effected when the initial conditions are such that

h*= -Vc1

. In this case the right-hand side has the factor (u
-

Show that the integration leads to the curvee a= - --. th uPP r

signs being taken together and the lower together. These curves have a common

asymptotic circle r = u//i
j

, one curve being within and the other ontside.
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366. Other powers. Ex. If the force F=fM7
, and the initial conditions

are such that 2/i3= 3Cv//*, prove that the equation (1) of Art. 360 takes the form

where 62 =/i/)V//i. Thence deduce the integrals = T
-, having a common

asymptotic circle. The Lemniscate can also be described under this law of force, if

the velocity is equal to that from infinity ; Arts. 320, 360.

367. Nearly circular orbits. To find the motion approxi-

mately, when the central force F = pu
n and the orbit is nearly

circular.

Beginning as in Art. 360 with the equation

m
we put u = c(\+x) where c is some constant to be presently

chosen but subject to the condition that x is to be a small

fraction. We thus find

We see now that the right-hand side of the equation will be

simplified if we choose c so that the constant term is zero, i.e. we

put hz =
/Ltc

w~3
. The equation then becomes

As a first approximation, we assume

x = Mcoa(p0 + a) ........................ (4),

where If is a small quantity. Substituting and rejecting the

squares of M we find

(I-p*)Mcos(p6 + a) = (n-2)Mcos(pB + a) ...... (5).

The differential equation is therefore satisfied to the first order,

if we put p* = 3 n. In this case we have as the equation of the

path
tt-p{l+JfcoB(p0+a)} ................. (6).

If n< 3, the equation (6) represents a real first approximate
solution of the differential equation (1). We notice that the

particle oscillates between the two circles u = c(l+M) and

u = c (1 M). The meaning of the constant c is now apparent ;

geometrically, 1/c is the harmonic mean of the radii of the bound-

ing circles; dynamically, 1/c is the radius of that circle which
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would be described about the centre of force with the given

angular momentum h.

The positions of the apses are found by equating dujdd to

zero. This gives p6 + OL = iir, the angle at the centre of force

een two successive apses is therefore irjp.

If n > 3, the value of p is imaginary, and the trigonometrical

expression takes a real exponential form, Art. 120. The quantity
x therefore becomes large when 6 increases, and the particle,

instead of remaining in the immediate neighbourhood of the

circumference of the circle, deviates widely from it on one side

or the other. As the square of x has been neglected the expo-
nential form of (6) only gives the initial stage of the motion and

ceases to be correct when x has become so large that its square
cannot be neglected. It follows from this that the motion of a

particle in a circle about a centre of force in the centre is unstable

if n > 3.

368. />. If the law of force is F=u2
/(u), and the orbit is nearly circular,

prove that a first approximation to the path is

Thence it follows that the ///*// angle is independent of the mean reciprocal

radius, viz. c, only when F= nu*, i.e., when the law of force it tome power of the

distance.

369. A second approximation. The solution (6) is in any case only a

first approximation to the motion, and it may happen that, when we proceed to a

second or third approximation, the value of p is altered by terms which contain M
as a factor. Besides this, we shall have x expressed in a series of several trigono-

metrical terms whose general form is Ncos(q0 + p), where N contains the square or

cube of M as a factor together with some divisor K introduced by the integration,

Arts. 139, 808.

Representing the corrected value of p by p + A, the error in p0 + a
t i.e. 0A.

increases by 2rA after each successive revolution of the particle round the centre

of force. The expression (6) will therefore cease to be even a first approximation

M soon as 0A has become too large to be neglected. On the other hand the

additional term to the value of u may be comparatively unimportant. The

magnitude of the specimen term U never greater than N and, unless K is also

small, we can generally neglect such terms.

In proceeding to a higher approximation we should first seek for those terms in

the differential equation which contain cos (pO + a) ; these being added to the terms

of the same form in equation (5) will modify the first approximate value of p.

We should also enquire if any term in the differential equation acquires by

integration a small divisor K and thus becomes comparatively large in the solution.
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37O. To obtain a second approximation we substitute the first approximation

(6) in the small terms of the differential equation (3). Writing (3), for brevity,

in the form

...} ........................... (7),

where /3
= $ (n

-
2), y=l(n -

2) (n
-

4), &c., we find after rejecting the cubes of M

^=(n-8){* + i|M/(l + coB3p*)} ........................ (8),

where p6 has been written for p8 + a for the sake of brevity. This equation shows

{Art. 303) that the second approximate value of x has the form

x=Mcospe +M2
(G + Acos2p$) ........................... (9),

where G and A are two constants whose values may be found by substitution, and

p has the same value as before.

To obtain a third approximation, we retain the term yx* in (7) and assume

x=M cosp6+ M*(G + Aco82p6) +M3
coaZp8 ............... (10).

To find the values of p, G, A and B we substitute in (7), express all the powers

of the trigonometrical functions in multiple angles and neglect all terms of the

order M*. Equating the coefficients of cosp8, cos 2p6, cosSpd and the constants

on each side, we find

=
(
n ~ 3

)

Solving these equations, and remembering that p- differs from 3-?i by terms

of the order M*, we find

G=-(n-2), A=^(n-2), B = -fa(n-2) (n- 3),

p*= (3-n){l-?\(n-2)(n + l)Mz
} (11).

The three first are correct when Jl/
2 is neglected and the last when M4 is neglected.

We notice that up to and including the third order of approximation the terms

G, A, B in equation (10) do not contain any small denominators, so that if M be

small enough all these terms may be neglected. The motion is then represented

very nearly by
u=c {1 + 3/008(^0 + a)} (12),

and this approximation holds until 6 gets so large that 3/ 4 cannot be neglected.

We notice also that the additional term in the value ofp vanishes only when the law

offorce i* either the inverse square or the direct distance.

Disturbed Elliptic Motion.

371. Impulsive disturbance. When a particle is describing

an orbit about a centre of force it may happen that at some

particular point of that orbit the particle receives an impulse
and begins to describe another orbit. We have to determine
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how the new orbit differs from the old, for example how the

major axis has been changed in position and magnitude, and in

general to express the elements of the new orbit in terms of

those of the undisturbed orbit.

Let the unaccented letters a, e, I, &c. represent the elements

of the undisturbed orbit, while the accented letters a', e', I', &c.

represent corresponding quantities for the new. We first express

the velocity v and the angle j3 at the given point of the orbit in

terms of the undisturbed elements. Thus v and ft are given by

v^fji
---

, sin/3 = ^ = v -
(1),

\r a] r vr

when the undisturbed orbit is an ellipse described about the fo<

We next consider the circumstances of the blow. Let m be

the mass of the particle, mB the blow. The particle, after the

impulse is concluded, is animated with the velocity B in the

given direction of the blow, together with the velocity v along
the tangent to the original path. Compounding these the particle

has a resultant velocity v' and is moving in a known direction.

Since the position of the radius vector is not changed by the

bln\v we may conveniently refer the changes of motion to that

line. If P, Q are the components of B along and perpendicular

to the radius vector and ft is the angle the direction of motion

makes with the radius vector, we have

v' cos 0' = vcosp + P, v' sin ff = v sin ft + Q (2).

Having now obtained v', &', the formulae (1), writing accented

letters for the old elements, determine the new semi-major axis a'

and the new semi-latus rectum I'. The position in space of the

major axis follows from Art. 336.

372. We may sometimes advantageously replace the $

of the equations (1) by another formula. We notice that mh is

th moment of the momentum of the particle about the centre

of force. Since just after the impulse the velocity v is the

resultant of v and B ment of v' is equal to that of v together

urith the moment of B. Hence

h' = h + Bq (3),

where q is the perpendicular on tin- line of action of the blow.

Since Aa =
/iJ, when the law of force follows the Newtonian law,
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this equation leads to

Thus the change in the latus rectum is very easily found.

As a corollary, we may notice that when the blow acts along

the radius vector, the angular momentum mh and therefore the

latus rectum of the orbit are unchanged. We also observe that if

the magnitude of the attracting force or its law of action were

abruptly changed, the value of h is unaltered.

373. Ex. 1. Two particles, describing orbits about the same centre of force,

impinge on each other. Prove

7/ijV + WISV=
Wlj/l, + mjl.,,

where ro^, wi^; m,/!/, mji^ are tlieir angular momenta before and after impact.

Kx. 2. A particle P of unit mass is describing an ellipse about the focus S.

A circle is described to touch the normal to the conic at P whose radius PC

represents the velocity at P in direction and magnitude. Prove that if the particle

is acted on by an impulse represented in direction and magnitude by any chord HP
of the circle, the length of the major axis is unaltered by the blow.

Since B=2vcos 6, the velocity in the direction of the blow is simply reversed.

Hence v'= v and a'=a by Art. 335.

374. If the direction of the blow does not lie in the plane of motion, the

plane of the new orbit is also changed. For the sake of the perspective, let the

radius vector SP be the axis of x and let the plane of xy be the plane of the old

orbit ; then v cos /3, v sin /3 are the components of velocity parallel to the axes of

x and y. Let the components of the blow be mX, mY, mZ ;
then just after the

blow is concluded the components of velocity parallel to the axes are v cos
/3 +Xt

and Z. The inclination i of the planes of the two orbits is therefore

given by tan/= -.

;
= ^. The particle begins to move in its new orbit with a

v sin p + j.

velocity v' in a direction making an angle /3'
with the radius vector SP given by

v' cos /S

7= v cos
/3 + X, (v' sin /3')

2 =
(v sin /S + T)

2 +Z2
.

The problem is now reduced to the case already considered.

If mh' is the angular momentum in the new orbit, its components about the

axes of x, y, z are 0,
- mh' sin i

,
mh' cos i. Hence

/*' cos i= h+ Yr, h' sin i = Zr,
where r= SP.

376. Examples. Ex. 1. A particle is describing a given ellipse about a

centre of force in the focus, and when at the farther apse A', its velocity is suddenly

increased in the ratio 1 : n. Find the changes in the elements.

The direction of motion is unaltered by the blow and since this direction is at

right angles to the radius vector from the centre of force, the point A' is one of the

apses of the new orbit.

Let o, e ; a', e' be the semi-major axes and eccentricities of the orbits. Then

since SA' is unaltered in length

(1).
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We have here chosen as the standard figure for the new orbit an ellipse having A'

for the further apse. A negative value of the eccentricity
'

therefore means that

A' is the nearer apse.

Also since v'= nv
t we have

where a' must be regarded as negative if the new orbit is a hyperbola, Art. 333.

From these equations we find

The point A' is therefore the farther or nearer apse according as n'(l-e)
is < or >1 ; if equal to unity the new orbit is a circle, if equal to -

1, a parabola.

The new orbit is an ellipse or hyperbola according as na
(1
-

e) < or > 2.

2. A particle describes an ellipse under a force tending to a focus. On
arriving at the extremity of the minor axis, the force has its law changed, so that

it varies as the distance, the magnitude at that point remaining the same. Prove

that the periodic time is unaltered and that the sum of the new axes is to their

difference as the sum of the old axes to the distance between the foci.

[Math. Tripos, I860.]

By Art. 325 the new orbit is an ellipse having the centre of force S in the

centre. Let the new law of force be fi'r.

Then when r=a, the forces are equal, hence

(1).

Measure a length SD parallel to the

direction of motion at B, such that the

velocity v at B is ^//t' . SD. Then SD is

the semi-conjugate of SB in the new orbit.

Equating the velocities at B in the old and

new orbits, we have when r=a

.-. SD=a ,., (2).

The conjugates SB, SD are equal diameters, the major and minor axes are

therefore the internal and external bisectors of the angle BSD. Representing the

semi-axes by a', b' t we have

a*+&'*=B9 + SZ)=2a3
t a'b' = SB . SD&inBSD = ab (3).

The internal bisector of the angle BSD is clearly the major axis.

If the change in the velocity had been made at any point of the ellipse, we

proceed in the same way. By drawing SD parallel to the direction of motion we
arrive at the known problem in conies, given two conjugate diameters in position

and magnitude, construct the ellipse.

The periodic times in the two orbits are respectively 2ir/^/*' and 2r v/a'/M.
The equality of these follows from the equation (1). The rest of the question

follows from (3).

3. A particle is describing an ellipse under a force /n/r* to a focus : when

the particle is at the extremity of the latos rectum through the focus this centre

of force is removed and is replaced by a force n'r' at the centre of the ellipse.

Prove that if the particle continue to describe the same ellipse /t'6
4 = /i.

[Coll. Exam. 1896.]

K. ,.. 16
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Ex. 4. A planet moving round the sun in an ellipse receives at a point of its

orbit a sudden velocity in the direction of the normal outwards which transforms

the orbit into a parabola, prove that this added velocity is the same for all points

of the orbit, and if it be added at the end of the minor axis, the axis of the

parabola will make with the major axis of the ellipse an angle whose sine is equal

to the eccentricity. [Coll. Exam. 1892.]

Ex. 5. A particle describes a given ellipse about a centre of force of given

intensity in the focus S. Supposing the particle to start from the further extremity

of the major axis, find the time T of arriving at the extremity of the minor axis.

At the end of this time the centre of force is transferred without altering its

intensity from S to the other focus H, and the particle moves for a second interval

T equal to the former under the influence of the central force in H . Find the

position of the particle, and show that, if the centre of force were then transferred

back to its original position, the particle would begin to describe an ellipse whose

eccentricity is (3
- e2)/(l + e). [Math. Tripos, 1893.]

Ex. 6. A body is describing an ellipse round a force in its focus S, and HZ is

the perpendicular on the tangent to the path from the other focus H. When the

body is at its mean distance the intensity of the force is doubled, show that SZ is

the new line of apses. [Coll. Ex.]

Ex. 7. A particle describes a circle of radius c about a centre of force situated

at a point on the circumference. When P is at the distance of a quadrant from

0, the force without altering its instantaneous magnitude begins to vary as the

inverse square. Prove that the semi-axes of the new orbit are |c,/2 and ^c^/3.

Ex. 8. Two inelastic particles of masses mlt m2 , describing ellipses in the

same plane impinge on each other at a distance r from the centre of force. If

Oj, /,; a.2,1^', are the semi-major axes and semi-latera recta before impact, prove

that in the ellipse described after impact

(TO! +w2 )
$ =

rz\l f r2 \*

*-) =(*-!,--) *

Ex. 9. A planet, mass J/, revolving in a circular orbit of radius a, is struck

by a comet, mass TO, approaching its perihelion ;
the directions of motion of the

comet and planet being inclined at an angle of 60. The bodies coalesce and

proceed to describe an ellipse whose semi-major axis is A.
m)

^
-. Prove

that the original orbit of the comet was a parabola ; and if the ratio of TO to M is

small, show that the eccentricity of the new orbit is (7^
-
4^/2)^ (rn/M).

[Coll. Ex. 1895.]

376. Continuous forces. We may apply the method of

Art. 371 to find the effects of continuous forces on. the particle.

Let/, g be the tangential and normal accelerating components of

any disturbing force, the first being taken positively when in-

creasing the velocity and the second when acting inwards.

We divide the time into intervals each equal to &t and consider
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the effect of the forces on the elements of the ellipse at the end

of each interval. We treat the forces, in Newton's manner, as

small impulses generating velocities fSt and gSt along the tangent
and normal respectively. The effect of the tangential force is

t<> increase the velocity at any point P from v to v + Sv, where

Bv =f&t, the direction of motion not being altered. To find the

effect of the normal force we observe that after the interval Bt

the particle has a velocity g$t along the normal, while the velocity

v along the tangent is not altered. The direction of motion has

therefore been turned round through an angle Sfi = gSt/v.

If the disturbing force were now to cease to act, the particle

wuuld move in a conic whose elements could be deduced from

these two facts, (1) the velocity at P is changed to v + Sv, (2) the

angle of projection is y9+ 8/8. The conic which the particle would

describe if at any instant the disturbing forces were to cease to act

is called the instantaneous conic at that instant.

377. To find the effect on the major axis, we use the formula

Since v is increased to v + 8v, we see by simple differentiation

,..(2).

In differentiating the formula for v2 we are not to suppose that dv represents

the whole change of the velocity iu the time St. The particle moves along the

ellipse and experiences a change of velocity dv in the time dt given by

vdv -^dr (3).

Taking dt = dt, the change of velocity in the time dt is dv + dv, the part dv being

due to the disturbing forces and the part dv to the action of the central force.

378. To find the changes in the eccentricity and line of apses.

We may effect this by differentiating the formulas

I = a (1 e*), A* = pl t

- = 1 + e cos

Since mh is the angular momentum, the increase of ml.

/', is equal to the moment of the disturbing forces about the

origin (Art. 372). Let ft be the angle the direction of motion at

/' makes with the radius vector,

CO8/9.

1C 2
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We deduce from equations (4)

SI = (1
- e2) Stt - ZaeS

and the values of Be and follow at once.

(1
- e2) Stt - ZaeSe, - = cos 0Se - e sin

379. Herschel has suggested a geometrical method of finding the changes of

the eccentricity and the line of apses in his Outlines of Astronomy*. He considers

the effect of the disturbing forces /, g on the position of the empty focus.

The effect of the tangential force / is to alter the velocity v and therefore to

alter a. Since SP+ PH=2a, the empty focus H is moved, during each interval

8t, along the straight line PH a distance HH'= 26a, where 5a is given by (2).

The effect of the normal force g is to turn the tangent at P through an angle

8(i
= gdtlv. Since SP, HP make equal angles with the tangent, the empty focus H

is moved perpendicularly to PH, a distance HH"= 2PH.dp.

Consider first the tangential force/, we have SH= 2ae, SH'= 2 (ae + dae). Hence

projecting on the major axis

25 (ae)
=HH' . cosPHS= 2Sa ^^ ,

where r'=HP=a+ ex, and x is measured from the centre
;

_x-e*x 5a_2a(l-e
2
)
xv

f
.

~T~ ~a~~ "7 Vf5t

Let iff be the longitude of the apse line HS measured from some fixed line

through S,

.. = = .

r' a ft r'
J

Consider secondly the normal force g. We have

SH=2ae, SH"= 2(ae + 6ae), 5a

/. 25 (ae) = - HH" sin PHS = -
2r'5p ^

HH" COB PHS

1 x + ae

* See also some remarks by the author in the Quarterly Journal, 1861, vol. iv.

It should be noticed that Herschel measures the eccentricity by half the distance

between the foci, a change from the ordinary definition which has not been followed

here.
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38O. The expressions for Se, 5 or should be put into different forms according

to the use we intend to make of them. Let ^ be the angle the tangent at P makes

with the major axis, then tan ^= -^ . We easily find by elementary conies

=p (-
f
-
^\

=^ .Also v*=p - - = . It immediately follows that

These formulae give the changes of e and -us produced by any tangential or normal

force.

381. Draw two straight lines OX, OY parallel to the principal diameters

situated as shown in the figure. Since /cos ^, /sin \f/
are the components of the

tangential disturbing force parallel to the principal diameters, we see that when the

force actt towards OX the eccentricity is increased, and when towards OY the apse

line is advanced; the contrary effects taking place when the force tends from these

lines.

The same rule applies to the normal disturbing force so far as the eccentricity

is concerned. It applies also to the motion of the apse except when the particle

lies between the minor axis and the latus rectum through the empty focus, and the

rule is then reversed. When the eccentricity is small, ~
=~a verv nearly

when the particle is near the minor axis; so that the effects of the tangential

force in this part of the orbit may be neglected and the rule applied generally.

382. Examples. / .r. 1. The path of a comet is within the orbit of

Jupiter, approaching it at the aphelion. Show that each time the comet comes

near Jupiter the apse line is advanced. This theorem is due to Callandreau, 1892.

The comet being near the aphelion and Jupiter just beyond, both the normal

and tangential disturbing forces act towards OY; the apse therefore advances.

-'. A particle is describing an elliptic orbit about the focus and at a

certain point the velocity is increased by I/nth, n being large. Prove that, if the

direction of the major axis be unaltered, the point must be at an apse, and the

change in the eccentricity is 2 (1 *)/n. [Coll. Ex. 1897.]

:t. An ellipse of eccentricity e and latus rectum I is described freely

about the focus by a particle of mass ro, the angular momentum being mh. A
mall impulse mu it given to the particle, when at P, in the direction of its motion ;

prove that the apmidal line is turned through an angle which is proportional to the

intercept made by the auxiliary circle of the ellipse on the tangent at P, and which

cannot exceed lujth. [Math. Tripos, 1898.]

Ex. 4. A body describes an ellipse about a centre of force S in the focus. If

A be the nearer apse, P the body, and a small impulse which generates a velocity

T act on the body at right angles to SP, prove that the change of direction of the
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T /2 \
apse line is given approximately by - ( + coaASP

J
SPain ASP, where e is the

eccentricity of the orbit and h twice the rate of description of area about S.

[Math. Tripos.]

"). A particle describes an ellipse about a centre of force in the focus S.

When the particle has reached any position P the centre of force is suddenly moved

parallel to the tangent at P through a short distance x, prove that the major axis

of the orbit is turned through the angle ^F, sin
tf>

sin (0
-
0) where G is the point at

oCr

which the normal at P meets the original major axis, 6 the angle SGP and the

angle the tangent makes with SP. [Coll. Ex. 1895.]

Ex. 6. A particle describes an ellipse about a centre of force /x/r
2 and is

besides acted on by a disturbing force *rn tending to the same point. Prove that

as the particle moves from a distance r to r, the major axis and eccentricity

change according to the law

Thence deduce the changes in a and e when K is very small.

383. A resisting medium. We may also use the formulae

of Art. 380 to find the quantitative effect of a resisting medium
on the motion of a particle describing an ellipse about a centre

of force in the focus.

The velocity of the particle being v, let the resistance be KV.

Then g = and/= Kdsjdt, and the equations of motion become

de _ Zb/c dy d-& _ 2b/c dx~ "
i'

e
~dt~

~

Usually/and g are so small that their squares can be neglected.

Now the changes of the elements a, e, &c. are of the order of /
and g, being produced by these forces. Hence in using these

equations we may regard the elements of the ellipse, when multiplied

by the coefficient K of resistance, as constants.

Supposing then that we reject the squares of K, we have by
an easy integration

2b/c
+ A > 0W = --77

-
c X + B,

V(A"0

where A, B are two undetermined constants. Since after a com-

plete revolution, the coordinates x, y return to their original values,

both the eccentricity and the position of the line of apses must

also be the same as before. There can therefore be no permanent

change in either. The greatest change of the eccentricity from



ART. 385.] EXCKE'S COMET. 247

its mean value is 2/c6
s

/wa2 >
while the apse oscillates about its

mean position through an angle 2icb/nea, where p,
= n*a, Art. 341.

384. /.".r. A comet moves in a resisting medium whose resistance is

/= - icF" ( -
J

where V is the velocity, r the distance from the sun and p, q are

positive quantities. When the true anomaly 6 is taken as the independent
variable (instead of t as in Art. 380), prove that

i^ = f^(l + 26cos0+ 2)~Ml + ecos0)-2
,

a ao i e*

= - 2A (cos 6 + e) (I + 2e cos 6 + eV~ (1 + e cos 0)-
2
,

~ =
(1 + e cos

where A = icn^8 a*"1
. (1

- )~*~ and n= n*a.

When the right-hand sides of these equations are expanded in series of the form

A + JBGO&8+ C cos 20+...

it is obvious that the only permanent changes are derived from the non-periodical

terms. Prove (1) that the longitude of the apse has no permanent changes,

(2) that the eccentricity at the time t is e-Aent (p + q- 1), (3) the semi-major axis

is a - 2Aant. These results are given by Tisserand, Mc. Ctlette, 1896.

When the law of resistance is such that p + q = l, it follows that neither the

eccentricity nor the line of apses have any permanent chuntje. For any values of

p and q not satisfying this relation the eccentricity will gradually change and
continue to change in the same direction. When the changes of any of the

elements have become so great that their products by the coefficient K of resistance

can no longer be neglected, the equations given above must be integrated in a

different way.

385. Enckc's Comet. The general effect of a resisting medium on the

motion of a comet is to diminish its velocity and therefore also the major axis of

its orbit, Art. 377. The ellipse which the comet describes is therefore continually

growing smaller and the periodic time, which varies as a8 '2
, continually decreases.

Encke was the first who thoroughly investigated the effect of a resisting

medium on the motion of a comet. This comet has since then been called after

his name. After making allowance for the disturbance due to the attraction of the

sun and the planets, he found by observation that its period, viz. 1200 days, was

diminished by about two hours and a half in each revolution. This he ascribed to

presence of a medium whose resistance varied as (r/r)
2 where v is the velocity

of the comet and r its distance from the sun.

The importance and interest of Enoke's result caused much attention to be

he astronomers Yon Asten of Pulkowa and afterwards

Backlund' studied its motions at each successive appearance with the greatest

* In . 1894, page 478, there is a short account of the

work of Backlnnd by himself. He speaks of the continued decrease of the accelera-

tion, the law of resistance, and gives references to his memoirs and particularly to
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attention. The acceleration of the comet's mean motion appears to have been

uniform from 1819, when Encke first took up the subject, to 1858. It then began
to decrease and continued to decrease until the revolution of 1868 1871 when its

magnitude was about half its former value. From 1871 to 1891 the acceleration

was again nearly constant.

Assuming the law of resistance to be represented by KVm/r
n

,
Backlund found

that n is essentially negative. This would make the density of the resisting

medium increase according to a positive power of the distance from the sun; a

result which he considered very improbable. He afterwards arrived at the

conclusion that we must replace l/r
w
by some function / (r) having maxima and

minima at definite distances from the sun. In Laplace's nebular theory the

planets are formed by condensations from rings of the solar nebula. In this

formation all the substance of each ring would not be used up and some of it

might travel along the orbit as a cloud of light material. It is suggested that

Encke's comet passes through nebulous clouds of this kind and that the resistance

they offer causes the observed acceleration.

It is known that comets contract on approaching the sun, sometimes to a very

great extent. Tisserand remarks that when the size of the comet decreases the

resistance should also decrease, and that this may help us to understand how the

resistance to any comet might vary as a positive power of the distance from the

sun. The size of Encke's comet also is not the same at every appearance and this

again may have an effect on the law of resistance.

It is clear that if Encke's comet does meet with a resistance, every comet of

short period which approaches closely to the sun must show the effect of the same

influence. In 1880 Oppolzer thought he had discovered an acceleration in the

motion of another comet. This was the comet Winnecke having a period of 2052

days. Further investigation showed that this was illusory, so that at present the

evidence for the existence of a resisting medium rests on Encke's comet alone.

386. Does the evidence afforded by Encke's comet prove a resisting medium?

Sir G. Stokes in a lecture* on the luminiferous medium says he asked the highest

astronomical authority in the country this question. Prof. Adams replied that

there might be attracting matter within the orbit of Mercury which would account

for it in a different way. Sir G. Stokes then goes on to say that the comet throws

out a tail near the sun and that this is equivalent to a reaction on the head towards

the eighth volume of his Calculs et Recherches sur la comete d'Encke. In the

Comptes Rendus, 1894, page 545, Callandreau gives a summary of the results of

Backlund. In the Traite de Me"canique Celeste, vol. iv. 1896, Tisserand discusses

the influence of a resisting medium. In the History of Astronomy by A. M. Clerke,

1885, examples of the contraction of comets near the sun are given. M. Valz in

a letter to M. Arago quoted in the Comptes Rendus, vol. vm. 1838, speaks of the

great contraction of a comet as it approached the sun. He remarks that as it was

approaching the earth at that time, it should have appeared larger. See also

Newcombe's Popular Astronomy, 1883.
* Presidential address at the anniversary meeting of the Victoria Institute,

June 29, 1893: reported in Nature, July 27, page 307.
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the sun. There is therefore an additional force towards the sun. The effect of

this would be to shorten the period even if there were no resisting medium. In

the course of his lecture he discusses the question, "must the ether retard a comet,"

and decides that we cannot with safety infer that the motion of a solid through it

necessarily implies resistance.

Kepler's Laws and the law of gravitation.

387. Kepler's laws. The following theorems were dis-

covered by the astronomer Kepler after thirty years of study.

(1) The orbits of the planets are ellipses, the sun being in

one focus.

(2) As a planet moves in its orbit, the radius vector from

the sun describes equal areas in equal times.

(3) The squares of the periodic times of the several planets

are proportional to the cubes of their major axes.

The last of these laws was published in 1619 in his Hannonice

Mundi and the first two in 1609 in his work on the motions of
Mars.

388. From the second of these laws, it follows that the

resultant force on each planet tends towards the sun; Art. 307.

From the first we deduce that the accelerating force on each

planet is equal to n/r*, where r is the instantaneous distance of

th;it planet from the sun, and p is a constant; Art. 332.

It is proved in Art. 341 that when the central force is /itt
a
,

the periodic time in an ellipse is T = ZTra* /*/fi, where a is the

semi-major axis. Now Kepler's third law asserts that for all the

planets jP* is proportional to a8
;

it follows that pis the samefor
till the planets.

Laws corresponding to those of Kepler have been found to hold

for the systems of planets and their satellites. Each satellite is

therefore acted on by a force tending to the primary and that

force follows the law of the inverse square.

It has been possible to trace out the paths of some of the

comets and all these have been found to be conies having the

sun in one focus. These bodies therefore move under the same
law of force as the planets.
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389. The laws of Kepler, being founded on observations, are

not to be regarded as strictly true. They are approximations,
whose errors, though small, are still perceptible. We learn from

them that the sun, planets and satellites are so constituted that

the sun may be regarded as attracting the planets, and the

planets the satellites, according to the law of the inverse square.

We now extend this law and make the hypothesis that the

planets and satellites also attract the sun and attract each other

according to the same law. Let us consider how this hypothesis

may be tested.

Let m lf w 2 ,
&c. be certain constants, called the masses of the

bodies, such that the accelerating attraction of the first on any
other body distant ra is m^r-?, the attraction of the second is

mz/rf, and so on. Let
//,

be the corresponding constant for the

sun.

Assuming these accelerations, we can write down the differen-

tial equations of motion of the several bodies, regarded as particles.

For example, the equations of motion of the particle mx may be

obtained by equating d-x/dt
2
, &c., to the resolved accelerating

attractions of the other bodies. The equations thus formed can

only be solved by the method of continued approximation. Kepler's

laws give us the first approximation ;
as a second approximation

we take account of the attractions of the planets, but suppose
that 7Mj, ra2 ,

&c. are so small that the squares of their ratio to
//,

may be neglected. This problem is usually discussed in treatises

on the Planetary theory. The solution of the problem enables

us to calculate the positions of the planets and satellites at any

given time and the results may be compared with their actual

positions at that time. The comparison confirms the hypothesis
in so extraordinary a way that we may consider its truth to be

established as far as the solar system is concerned.

390. Extension to other systems. The law of gravitation

being established for the solar system, its extension to other

systems of stars may be only a fair inference. But we should

notice that this extension is not founded on observation in the

same sense that the truth of the law for the solar system is

established*. The constituents of some double stars move round

*
Villarceau, Connaissance des temps for the year 1852 published in 1849; A.

Hall, Gould's Astronomical Journal, Boston, 1888.
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each other in a periodic time sufficiently short to enable us to

trace the changes in their distance and angular position. We
may thus, partially at least, hope to verify the law of gravitation.

What we see, however, is not the real path of either constituent,

but its projection on the sphere of the heavens. We can deter-

mine if the relative path is a conic and can verify approximately
the equable description of areas

;
but since the focus of the true

juith does not in general project into the focus of the visible

path, an element of uncertainty as to the actual position of the

centre of force is introduced.

We cannot therefore use Kepler's first law to deduce from

these observations alone that the law of force is the inverse

square.

391. Besides this, there are two practical difficulties. First, there is tin-

delicacy of the observations, because the errors of observations bear a larger ratio

to the quantities observed than in the solar system. Secondly, a considerable

number of observations on each double star is necessary. Five conditions are

required to fix the position of a conic, and the mean motion and epoch of the

particle are also unknown. Unless therefore more than seven distinct observations

have been made, we cannot verify that the path is a conic. These difficulties are

gradually disappearing as observations accumulate and instruments are improved.

302. Besides the motions of the double stars we can only look to the proper

motions of the stars in space for information on the law of gravitation. Some of

these velocities are comparable to that of a comet in close proximity to the sun

and yet there is no visible object in their neighbourhood to which we could ascribe

:ecessary attracting forces. At present no deductions can be made, we must

wait till future observations have made clear the causes of the motions.

303. Other reasons. The law of gravitation is generally deduced from

Kepler's laws, partly for historical reasons and partly because the proof is at once

simple and complete. It is however useful and interesting to enquire what we may
learn about the law of gravitation by considering other observed facts.

1. It is given that for all initial conditions the path of a particle is a

plane curve: deduce that the force is central.

Consider an orbit in a plane /', then at every point of that orbit the resultant

force must lie in the plane. Taking any point A on the orbit project particles in

all directions in that plane with arbitrary velocities, then since the plane of motion

of each must contain the initial tangent at A and the direction of the force at A,

each particle moves in the plane P. It follows that at every point of the plane P
traversed by these orbits the resultant force lies in the plane. If these orbits do

not cover the whole plane we take a new point 11 on the boundary of the area

covered, and again project particles in all directions in that plane with arbitrary

By continually repeating this process we can traverse every point of

th> plane, provided no points are separated from A by a line along which the
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force is infinite. It follows that at every point of the plane P the force lies in

that plane.

Next let us pass planes through any point A of one of these orbits and the

direction AC of the force at A. Then by the same reasoning as before the

direction of the force at points in each plane must lie in that plane and must

therefore intersect AC. Thus the force at every point intersects the force at

every other point. It follows that the force is central.

An observer placed at the sun, who noticed that all the planets described great

circles in the heavens, would know from that one fact that the force acting on

each was directed to the sun. Halphen, Comptes Rendus, vol. 84, Darboux's Notes

to Despeyrous' M6canique.

Ex. 2. If all the orbits in a given plane are conies, prove that the force is

central.

If a particle P be projected from any point A in the direction of the force at A,
the radius of curvature of the path is infinite at A. Since the only conic in which

the radius of curvature is infinite is a straight line, the path of the particle P is a

straight line and therefore the force at every point of this straight line acts along
the straight line. The lines of force are therefore straight lines.

These straight lines could not have an envelope, for (unless the force at every

point of that curve is infinite) we could project the particles along the tangents to

the envelope past the point of contact so as to intersect other lines of force. The

directions of the force would not then be the same at the same point for all paths.

Bertrand, Comptes Rendus, vol. 84.

Ex. 3. If the orbits of all the double stars which have been observed are

found to be closed curves, show that the Newtonian law of attraction may be

extended to such bodies.

Bertrand has proved that all the orbits described about a centre of force (for

all initial conditions within certain limits) cannot be closed unless the law of force

is either the inverse square or the direct distance. By examining many cases of

double stars we may include all varieties of initial conditions, and if all these

orbits are closed the law of the inverse square may be rendered very probable. See

Arts. 370, 426. Bertrand when giving this theorem in Comptes Rendus, vol. 77,

1873, quotes Tchebychef.

The Hodograph.

394. A straight line OQ is drawn from the origin parallel

to the instantaneous direction of motion and its length is propor-

tional to the velocity of a particle P, say OQ = kv. The locus of

Q has been called by Sir W. R. Hamilton the hodograph of the

path of P. Its use is to exhibit to the eye the varying velocity

and direction of motion of the particle. See Art. 29.

By giving k different values we have an infinite number of

similar curves, any one of which may be used as a hodograph.
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It follows from Art. 29 that, if s' be the arc of the hodograph,

ds'/dt represents in direction and magnitude the acceleration of P.

395. If the force on the particle P is central and tends to

the origin 0, it is sometimes more convenient to draw OQ per-

pendicularly instead of parallel to the tangent. If OF be a

perpendicular to the tangent, the velocity v of P is hjOY\ hence

if OQ = kv, we see that the hodograph is then the polar reciprocal

of the path with regard to the centre of force, the radius of the

auxiliary circle being *J(hk). If F be the central force at P, the

t Q travels along the hodograph with a velocity kF.

396. Examples. A.r. 1. The path being an ellipse described about the

centre C, and OQ being drawn parallel to the tangent, prove that the hodographs
are similar ellipses.

Let CQ be the semi-conjugate of CP t then v = ,Jn.CQ, Art. 326. Hence if

k = lj,Jn, the hodograph it the ellipse itself. The point Q then travels with a

velocity ^/t . CP.

'2. The path being an ellipse described about the focus S, prove that a

hodograph is the auxiliary circle, the other focus // being the origin and HQ
drawn perpendicularly to the tangent at P.

Let SY, HZ be the two perpendiculars on the tangent, then v-h\SY=HQIk t

also SY.HZ = b-, .-. HQ =HZ if & = 62//i. Since the locus of Z is the auxiliary

circle the result follows at once.

If. 3. The path being a parabola described about the near focus S, prove
that a hodograph is the circle described on AS as diameter, where A is the vertex

and SQ is drawn perpendicularly to the tangent.

Ex. 4. The hodograph of the path of a projectile is a vertical straight line,

the radius vector OQ being drawn parallel to the tangent.

If the tangent at P make an angle ^ with the horizon, the abscissa of Q is

>*$ This i* constant because the horizontal velocity of P is constant. The

point Q travels along this straight line with a uniform velocity kg.

~>. An equiangular spiral is described about the pole, show that a hodo-

grmph is an equiangular spiral having the same pole and a supplementary angle.

See Art. 30.

'. A bead moves tinder the action of gravity along a smooth vertical

circle starting from rest indefinitely near to the highest point. Show that a polar

equation of a hodograph ia r' = 6 sin i tf, the origin being at the centre.

7. The hodograph of the path of a particle P is given, show that if the

path of P is a central orbit, the auxiliary point Q must travel along the hodograph
with a velocity v' = Xp'V, where p' is the perpendicular from the centre of force on

the tangent to the hodograph and p is the radius of curvature. Show also that

the central force F=v'jk and the angular momentum A = l/\&*.

The condition that the path la a central orbit is v*jp= Fpjr. Writing j
= c a

/r*

and r= c 2//, we find F and thence v'.
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Ex. 8. The hodograph of the path of P is a parabola with its focus at 0, and

the radius vector OQ = r' rotates with an angular velocity proportional to /'.

Prove that the path of P is a circle passing through 0, described about a centre

of force situated at 0.

Since the angular velocity of OQ is nr', we find by resolving v' perpendicularly

to OQ that v' = nr^lp'. In a parabola /r'= 2/>'
2
,
and since p'=r'dr'jdp' we see that

v' = \p"p' where X = n/7. The path is therefore a central orbit. But the polar

reciprocal of lr' = 2p" (obtained by writing p' = cz/r, and r'=c2
jp) is r*=p (2c

2
/J),

and this is a circle passing through 0.

Ex. 9. A particle describes a curve under a constant acceleration which makes

a constant angle with the tangent to the path ; the motion takes place in a medium

resisting as the nth power of the velocity. Show that the hodograph of the curve

described is of the form b~ne -** *=- - a~\ [Coll. Ex.]

J-'.x. 10. A particle, moving freely under the action of a force whose direction

is always parallel to a fixed plane, describes a curve which lies on a right circular

cone and crosses the generating lines at a constant angle. Prove that the hodo-

graph is a conic section. [Coll. Ex.]

397. Elliptic velocity. Since the velocity is represented
in direction and magnitude by the radius vector of the hodograph
we may use the triangle of velocities to resolve the velocity into

convenient directions.

Thus when the path is an ellipse described about the focus

S, the velocity is represented perpendicularly by HZJk, where

k = b*/h and H is the other focus. If C be the centre this may be

resolved into the constant lengths HC, CZ, the former being a

part of the major axis and the latter being parallel to the radius

vector SP. Hence the velocity in an ellipse described about the

focus S can be resolved into two constant velocities one equal to ae/k

in a fixed direction, viz. perpendicular to the major axis, and the

other equal to a/k in a direction perpendicular to the radius vector

SP of the particle, where k = b^/h. [Frost's Newton, 1854.]

398. The hodograph an orbit. We have seen that when the force is central

a hodograph of the path of P is a polar reciprocal. It follows that if the hodo-

graph is the path of a second particle P', each curve is one hodograph of the other.

Ex. 1. Let r, / be the radii vectores of an}' two corresponding points P, Q of

a curve and its polar reciprocal, the radius of the auxiliary circle being c. If these

curves be described by two particles P, P with angular momenta h, h'
, prove that

the central forces at the two points P, Q are connected by FF'

Ex. 2. Prove that the two particles will not continue to be at points which

correspond geometrically in taking the polar reciprocal, unless the orbit of each is

an ellipse described about the centre. [The necessary condition is that the velocity

v' = kF in the hodograph should be equal to the velocity v'= h'lp
f

in the orbit.

Since p'=c
2
/r, this proves that F varies as r.]
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Motion of two or more attracting Particles.

399. Motion of two attracting particles. This is the

problem of finding the motion of the sun and a single planet
which mutually attract each other. To include the case of two

MI us revolving round each other, as some double stars are seen to

do, we shall make no restriction as to the relative masses of the

two particles. The problem can be discussed in two ways ac-

cording as we require the relative motion of the two particles or

the motion of each in space.

Let M, m be the masses of the sun and the planet, r their

instantaneous distance. The accelerating attraction of the sun

on the planet is M/r
3

,
that of the planet on the sun m/r*.

Initially the sun and the planet have definite velocities. Let

us apply to each an initial velocity (in addition to its own) equal
and opposite to that of the sun

;
let us also continually apply to

each an acceleration equal and opposite to that produced in the

sun by the planet's attraction. The sun will then be placed

initially at rest, and will remain at rest, while the relative motion

f the planet will be unaltered. See Art. 39.

The planet being now acted on by the two forces M/r* and

m /-, both tending towards the sun, the whole force is (M+ m)/r*.

The planet therefore, as seen from the sun, moves in an ellipse

having the sun in one focus. The period is

27T

where a is the semi-major axis of the relative orbit. In the same

way the sun, as seen from the planet, appears to <1< >< -rilu- an

ellipse of the same size in the same time.

400. We notice that the periodic time of a double star does

not depend <, (he mass of either corus/ it on the sum of the

masses. Th< time in the same orbit is the same for the same

total mass however that mass is distributed over the two bodies.

401. Consider next the actual motion in space of the two

v. We know by Art. 92 that the centre of gravity of the

two bodies is either at rest or moves in a straight line with
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uniform velocity. It is sufficient to investigate the motion

relatively to the centre of gravity, for, when this is known, the

actual motion may be constructed by imposing on each member
of the system an additional velocity equal and parallel to that of

the centre of gravity.

Let S and P be the sun and planet, G the centre of gravity,

then M.SP = (M + m)GP. The attraction of the sun on the

planet is

M MS JL M'

SP* M+mGP*" GP*'

The attraction of the sun on the planet therefore tends to a

point G fixed in space and follows the law of the inverse square.

The planet therefore describes an ellipse in space with the centre

of gravity in one focus, and the period is .,., a
,
where a is the

semi-major axis of its actual orbit in space.

The actual orbits described by the sun and planet in space

are obviously similar to each other and to the relative orbit of

each about the other. If a, a' be the semi-major axes of the

actual orbits of the planet and sun, a that of the relative orbit,

we have by obvious properties of the centre of gravity,

a/M = af/m = a/(M+ m).

402. To find the mass of a planet which has a satellite. Since

the mean accelerating attractions of the sun on the two bodies

are nearly equal, their relative motion is also nearly the same as

if the sun were away. Taking the relative orbit to be an ellipse,

let a' be its semi-major axis. If m, m' are the masses of the

4-7T
2

planet and satellite, T' the period, we have T'* = , a'
3

. Whenm + m
T' and a' have been found by observation, this formula gives the

sum of the masses. The masses in this equation are measured

in astronomical units, i.e. they are measured by the attractions of

the bodies on a given supposititious particle placed at a given

distance. It is therefore necessary to discover this unit by finding

the attraction of some known body.

Consider the orbit described by the planet round the sun.

Since we can neglect the disturbing attraction of the satellite,
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vre have, if a is the semi-major axis of the relative orbit and T
4 2

the period, T-=^j-- a*.M + m

Dividing one of these equations by the other, we find

m + / _ /TV /civ

F+i5"\Pj W '

This formula contains only a ratio of masses, a ratio of times and

a ratio of lengths. Whatever units these quantities are respec-

tively measured in, the equation remains unaltered. Since in is

small Minj.aivd with the mass M of the sun, and m small com-

jiaivd with the mass m of the primary, we may take as a near

approximation -^ Vm\
( )

In this way the ratio of the mass

of any planet with a satellite to that of the sun can be found.

403. The determination of the mass of a planet without a

satellite is very difficult, as it must be deduced from the pertur-
liatiiuis of the neighbouring planets. Before the discovery of the

satellites of Mars, Leverrier had been making the perturbations

due to that planet his study for many years. It was only after a

laborious and intricate calculation that he arrived at a determina-

ti"ii of the mass. After Asaph Hall had discovered Deimos and

Phobos the calculation could be shortly and effectively made.

According to Asaph Hall the mass of Mars is 1/3,093,500 of the

sun. while Leverrier made it about one three-millionth. Thi>

M agreement between two such different lines of investigation

-ry remarkable; see Art. 57. The minuteness of either satellit .

enables us to neglect the unknown ratio m'/m in Art. 402 and

thus to drt rmirn- tin- mass of Mars with great accuracy.

4O4. Examples. A.r. 1. Supposing the period of the earth round the sun

and that of the moon round the earth to be roughly 365$ and 27& days and the

ratio of the mean distances to be 885, find the ratio of the sum of the miiSM of

the earth and moon to that of th< MID. The actual ratio given in the Nauticul

.-I /HWIMIC for 1889U1/82H1.

-'. The constituents of a double star describe circles about each oth<

time T. If they were deprived of velocity and allowed to drop into each other,

prove that they will meet after a time T/4^/2.

3. The relative path of two mutually attracting particles is a circle of

nidiuH 6. Prove that if the velocity of each is halved, the eccentricity of the sub-

sequent relative path is 8/4 and the semi-major axis is 4fr/7.

R. D. 17
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Ex. 4. Two particles of masses w, w', which attract each other according to

the Newtonian law, are describing relatively to each other elliptic orbits of major
axis 2a and eccentricity <-, and are at a distance r when one of them, viz. ///, is

suddenly fixed. Prove that the other will describe a conic of eccentricity e'

such that

*j* + *><i- = /2_iy'V am(l-e*) f \r aj

It is supposed that the centre of gravity had no velocity at the instant before the

particle m became fixed. [Coll. Ex. 1895.]

Ex. 5. Two particles move under the influence of gravity and of their mutual

attractions: prove that their centre of gravity will describe a parabola and that

each particle will describe relatively to that point areas proportional to the time.

[Math. Tripos, I860.]

Ex. 6. The coordinates of the simultaneous positions of two equal particles

are given by the equations

x= aB- 2a sin 6, y = a-acos$; x
l
= a6, y l

=-a + acosd.

Prove that if they move under their mutual attractions, the law of force will be

that of the inverse fifth power of the distance. [Math. Tripos.]

Ex. 7. Two homogeneous imperfectly elastic smooth spheres, which attract

one another with a force in the line of their centres inversely proportional to the

square of the distance between their centres, move under their mutual attraction,

and a succession of oblique impacts takes place between them; prove that the

tangents of the halves of the angles through which the line of centres turns

between successive impacts diminish in geometrical progression. [Math. T. 1895.]

Consider the relative motion. The blow at each impact acts along the line

joining the centres, hence the latera recta of all the ellipses described between

successive impacts are equal. The normal relative velocity is multiplied by the

coefficient of elasticity at each impact. The radius vector of the relative ellipse is

the same at each impact, being the sum of the radii of the spheres. The result

follows immediately from Ex. 1, Art. 337.

4O5. Ex. 1. Herschel says that the star Algol is usually visible as a star of

the second magnitude and continues such for the space of 2 days 13 hours. It

then suddenly begins to diminish in splendour and in 3 hours is reduced to the

fourth magnitude, at which it continues for about 15 minutes. It then begins to

increase again and in 3 hours more is restored to its usual brightness, going

through all its changes in 2 d. 20 hr. 48 min. 54-7 sec. This is supposed to be due

to the revolution round it of some opaque body which, when interposed between

us and Algol, cuts off a portion of the light. Supposing the brilliancy of a star of

the second magnitude to be to that of the fourth as 40 to 6-3 and that the relative

orbit of the bodies is nearly circular and has the earth in its plane, prove that the

radii of the two constituents of Algol are as 100 : 92 and that the ratios of their

radii to that of their relative orbit are equal to -171 and -160. If the radius of

the sun be 430000 miles and its density be 1-444, taking water as the unit, prove
that the density of either constituent of Algol (taking them to be of equal densities)

is one-fourth that of water. The numbers are only approximate.

[Maxwell Hall, Observatory, 1886.]



ART. 407.] THREE ATTRACTING PARTICLES. 259

/.'.r. 2. The brightness of a variable star undergoes a periodic series of changes
in a period of T years. The brightness remains constant for mT years, then

gradually diminishes to a minimum value, equal to 1 - A-
2 of the maximum, at

which minimum it remains constant for nT years and then gradually rises to the

original maximum. Show that these changes can be explained on the hypothesis

that a dark satellite revolves round the star. Prove also that, if the relative orbit

is circular, and the two stars are spherical, the ratio of the mean density of the

double star to that of the sun is

D_ r(l + A-)*Q08*iMr-(l- A-)
2 cos-

mir"^
T-

(
1 1 A-

;!

) L cos* nw - cos*mr J
'

where D is the apparent diameter of the sun at its mean distance. [Math. T. 1893.]

406. Three attracting Particles. The problem of deter-

mining the relative motions of three or more attracting particles

has not been generally solved. The various solutions in series

which have as yet been obtained usually form the subjects of

separate treatises, and are called the Lunar and Planetary theoi

Laplace has however shown that there are some cases in which

the problem can be accurately solved in finite terms*.

407. Let the several particles be so arranged in a plane that

the resultant accelerating force on each passes through the com-

mon centre of gravity of the system and that each resultant is

proportional to the distance of the particle from that centre. It is

tln-n evident that if the proper common angular velocity be given
to the system about 0, the centrifugal force on each particle may
be made to balance the attraction on that particle. The particles

of the system will then move in circles round (t with equal angular
velocities, tin- lines joining them forming a figure always equal
and similar to itself. Each parti< 1. also will describe a circle

relatively to any other particle.

Let us next enquire what conditions are necessary that the

particles may so move that the figure formed by them is always
^imilar to its original shape, but of varying size. Let the distances

*
Laplace's discussion may be found in th. sixth chapter of the tenth book of

' 'flftte. The proposition that the motion when the particles are in

a straight line is unntable was first established by Liouvill. . .1, ,/, mU </" Science*,

1842, and Connai**ance det Temp for 1845 published in 1842. His proof is

different from that given in the text. The motion when the particles are at the

corners of an equilateral triangle is discussed in the Proceeding* of the London

M'it '/, Feb. 1876. See also the author's Rigid Dynamic*, \>

Art. 286, and vol. n. Art. 108. There is also a paper by A. O. Wythoff, On the

hiin.nnicnl liability of a tyttem of particle*, Amsterdam Math. Soc. 1896.

172
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of the particles from the centre of gravity be rlt ra , &c. We
then have for each particle the equations

dt> dt~ ' rdt dt

Since the figure is always similar, these equations are to be satisfied

when dO/dt is the same for every particle, and rlt r2 ,
&c. have the

ratios alt a2 , &c., where alf a._>, &c., are some positive finite constant

quantities. It immediately follows that the arrangement must be

such that the F's are in the same positive ratios and also the G's.

Since the mutual attractions of the particles form a system
of forces in equilibrium, the equivalent system ml

Fl ,
m2Fa ,

&c.

and mlGl) mjjr^ &c. is also in equilibrium. The sum of the mo-

ments of the G's about must therefore be zero, which (since

they are in the ratios a1} &c.) is impossible unless each G is zero.

If also the initial conditions are such that both the radial

velocities drjdt, &c. and the transverse velocities r^Q/dt, &c.,

have the ratios aly &c., all the equations will be satisfied by

assuming rlt ra ,
&c. to have the constant ratios a1} 2 , &c. The

motion of some oue particle, say m^ ,
is determined by the two polar

equations of that particle.

The result is, that if the particles move so as to be always

at the corners of a similar figure, that figure must be such that

the resultant accelerating forces on the particles act towards the

common centre of gravity and are proportional to the distances

from 0. This being true initially, the particles must be projected

in directions making equal angles in the same sense with their

distances from 0, with velocities proportional to those distances.

408. The two arrangements. To determine how three

particles must be arranged so that the force on any one may pass

through the common centre of gravity ; the law of force being the

inverse icth power of the distance.

It is evident that the condition is satisfied when the three

particles are arranged in a straight line. We have now to

enquire if any other arrangement is possible.

It is a known theorem in attraction that if two given particles

of masses M, m attract a third ra', placed at distances p, r from

them, with accelerating forces Mp, mr, the resultant passes through
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the centre of gravity of M, m and therefore through that of all

three. In order that the resultant of M/p* and m/r* may also

pass through the centre of gravity of M, m, it is evident that

the ratio of M/p* to m/r* must be equal to the ratio Mp to mr.

It immediately follows (except * = -!) that p = r. The three

particles must therefore be at equal distances
;
see also Art. 304.

The result is that for three attracting particles there are

only two possible arrangements; (1) that in which the particlt -.

however unequal their masses may be, are at the corners of an

equilateral triangle, (2) that in which they are in the same straight

line.

It may also be shown that when the law of attraction is the

inverse *th, the arrangement at the corners of an equilateral

triangle is stable when
~' - > 3 l-n

-

2,liiin \O-KJ

409. The line arrangement. Three mutually attracting

jKirti'-Ieti whose masses are M, m', m are placed in a straight line.

It it required to determine the conditions that throughout their sub-

sequent motion they may remain in a straight line.

Let the law of attraction be the inverse /tth power of the

distance. Let M, m, be the two extreme particles, m' being

between the other two. Let a, 6, c be the distances Mm, Mm,
m'm : then a = b-\-c.

A necessary condition is that the resultant accelerating forces

on the particles must be proportional to their distances from the

centre of gravity (Art. 407). We therefore have

Mla* + m'/c* _ M/b*
-
m/c* _ m/a* + m/b*

(
.

Ma+m'c Mb me ma + m'b

where the numerators express the accelerating forces on the

particles ;m<l the <1 -nominators are proportional to the distances

from 0.

The equalities (1) are equivalent to only one equation, for if

multiply the numerators and denominators of t he three frac-

tion-, l,y m. m, -M respectively, the sum of the numerators and

also that of the denominators are zero. Putting a = 6(l-f /
>

c = bp, we arrive at

m{(l+j>)'
+1

- / +1
}=0...(3).

The left-hand -ide is negative whenp = and positive when
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infinitely large, the equation therefore has one real positive root,

whatever positive values M, m', m may have. Putting p = l, the

left side becomes (M m)(Z*
+l

1); since we may take M as the

greater of the two extreme particles we see that the real positive

value of p is less than unity, provided x + l is positive. If K -f 1

were negative the root would be greater than unity.

Whatever the masses of the particles may be it follows that

if they are so placed that their distances have the ratios given by
this value of p, and their parallel velocities are proportional to

their distances from 0, they will throughout their subsequent
motion remain in a straight line.

When the attraction follows the Newtonian law, the equation

(2) becomes the quintic

(M+ m')p* + (3M + 2m')p* + (3M+m')p* - (m' + 3m)p
z

- (2m + 3m)p - (m + m') = Q.. .(3).

The terms of this equation exhibit but one variation of sign, and

there is therefore but one positive root.

It may be shown in exactly the same way that in the general

case, when K has any positive integral value, the equation (2) has

only one positive root; all the terms from p
2** 1 to pK+l

being

positive, while those from p* to p are negative.

410. When the positions of two of the masses are given,

there are three possible cases
; according as the third is between

the other two or on either side. Since the analytical expression
for the law of the inverse square does not represent the attraction

when the attracted particle passes through the centre of force,

Art. 135; these three cases cannot be included in the same

equation. We thus have three equations of the form (3), one

for each arrangement.

411. In the case of the sun, earth, and moon, M is very much

greater than either m or m'. Since p vanishes when m and m'

are zero, we infer that p is very small when m/M and m'/M are

small. The equation (3) therefore gives 3p
s = (m + m')/M, or,

using the numerical values of m, m' and M, p = 1/100 nearly.

If the moon were therefore placed at a distance from the

earth one hundredth part of that of the sun, the three bodies

might be projected so that they would always remain in a straight
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line. The moon would then be always full, but at that distance

light would be much diminished. This configuration of the

Min, earth and moon however could not occur in nature because

this state of steady motion is unstable. On the slightest dis-

turbance the whole system would change and the particles would

deviate from their former paths.

412. Three mutually attracting particles whose masses are 37, m', m describe

circles round their common centre of gravity and are always in a straight line.

Prove that if the force vary as any inverse power of the distance this state of motion

is unstable.

Reducing the particle M to rest we take that point as the origin of coordinates.

Let (r, 0) be the coordinates of m, (/, 0') those of m'. The particle m is acted on

by (M+ m)/r* along the straight line inM, and m'/r'" in a direction parallel to m'.V.

The polar equations of the motion of m are

= -* COS d) COS0)
' '" > (1).

m' . in' r' sin u= sin uH
/ if X

where u>, are the angles at .V, m of the triangle formed by joining the particles

and R is the side mm'. In the same way the polar equations of the motion

of m' are
r-r' ,/W\- M+m' m m ^" r U) = --^"^ co8w+

y?
C080

where 0' i the external angle of the triangle at w'. In forming these equations

the standard case is that in which 6' > 9 and r
1 < r.

-hall now substitute in these equations r= a (1 + x), 6 = nt + y; r' = b(l + y) t

0' = nt + r), and reject all powers beyond the tirst of the small quantities x, y, , 17.

Remembering that Bin 0/r'^ sin <f>'lr
= *in ujlt we find after some reduction

(3>
_ ns _ /,;)

x - Zndy + m'tcli* + . 77
= 0,

2x 4 (5- + m'lt) y +0 .
- m'/Jif =0,

nucAx + . y + (*- n2 - K/'){- 2n ^ = ,

where for brevity we hare written for d/dt, and c = -

,

'

a*-*-"
1

.

'

The steady motion has been already found in Art 409, bat it may alto be

iced from the first and third of the equations (1) and (2) by equating the

constants. We thus find n*= E - m'B, n*= F-mA.
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We notice that the constants E, F are positive. When K + ! is positive, it lias

been shown in Art. 409 that a > b> c, and therefore A , B and E + F- 2n- are positive.

Lastly whatever K may be E + F-n- is positive

To solve the four equations, we put x = GeM , y = He, = KeM
, rj

= LeM . Sub-

stituting and eliminating the ratios G, H, K, L we obtain a determinantal equation
whose constituents are the coefficients of x, y, , TJ, with X written for 5. This

determinant is of the eighth degree in X. To find its factors we must before

expansion make some necessary simplifications which we can only indicate here.

We first add the column to the x column and the 77 column to the y column.

The second column may now be divided by X. Multiplying the second column by
2;i and subtracting from the first, we see that X2 -

(K
-

3) n
z is another factor which

we divide out. Subtracting the first row from the third and the second from the

fourth, the first column acquires three zeros and the second column two. The

determinant is now easily expanded and we have

X2
{X

2
-(/c-3)/i

2
} J(X

2
+(7)(X

2
-(7K-(/c + l)n

2
) + 4H2X2

}=0, .

where C=E + F-2n*. If *>3, this equation gives a real positive value of X and

the motion is therefore unstable. If K have any positive value C is positive, and

the third factor has the product of its roots negative ;
one value of X2 is real and

positive and the other real and negative. The motion is therefore unstable for <ill

positive values of K.

413. Ex. 1. Three mutually attracting particles are placed at rest in a

straight line. Show that they will simultaneously impinge on each other if the

initial distances apart are given by the value of p in the equation of the (2it+l)th

degree of Art. 409. [This equation expresses the condition that the distances

between the particles are always in a constant ratio.]

Ex. 2. Three unequal mutually attracting particles are placed at rest at the

corners of an equilateral triangle and attract each other according to the inverse

th power of the distances. Prove that they will arrive simultaneously at the

common centre of gravity. If the law of attraction is the inverse square, the time

of transit is $ v (
3
/2/*)* where ^ is the sum of the masses and a the side of the

initial triangle, Art. 131.

414. A swarm of particles. Let us suppose that a comet

is an aggregation of particles whose centre of gravity describes an

elliptic orbit round the sun. The question arises, what are the

conditions that such a swarm could keep together*? Similar

conditions must be satisfied in the case of a swarm consolidating

* The disintegration of comets was first suggested by Schiaparelli who proved

that the disturbing force of the sun on a particle might be greater than the

attraction of the comet. He thus obtained as a necessary condition of stability

m/b
3> 2If/a

3
. The subject was dynamically treated by Charlier and Luc Picart on

the supposition of a circular trajectory. They arrived at the condition vijb'^> 3J//a
3

;

Bulletin de VAcademie de S. Ptersbourg, Annales de VObservatoire de Bordeaux,

Tisserand, Mic. Celeste, iv. The condition of stability was extended to the case of

an elliptic trajectory by M. 0. Callandreau in the Bulletin Astronomique, 1896. The

brief solutions here given of these problems are simplifications of their methods.



ART. 414-.] A SWARM OF PARTICLES. 265

into a planet in obedience to the Nebular theory. The following

example will illustrate the method of proceeding.

We shall suppose the sun A to be fixed in space, Art. 399.

Let B be the centre of the swarm, C any particle. Let r, 6 be

the polar coordinates of B referred to A, and f, 77 the coordinates

of C referred to B as origin, the axis of f being the prolongation

of AB. Let M be the mass of the sun. Supposing, as a first

approximation, that the swarm is homogeneous and spherical, its

attraction at an internal point C is pp, where p = BC. If m be

the mass and b the radius of the swarm, pb = m/b*.

The equations of motion are, by Art. 227,

'd0\*_

...(1).

These equations also apply to the motion of the particle at B,

wht-iv f = 0, 77
= 0. Hence when we expand in powers of f, 77,

all the terms independent of f, 77 must cancel out. We thus have

d' -drjdB d>6 /d0y 2A/f---*
(dt)

" -

f ...... ( ^- )

d1;d6 d>0 M\> -Mr,

If the centre of gravity of the swarm describe a circle about

in, we write r = a, dOjdt = //. The equations then become

r

oj

:
= A cos (pt -f a), 77

= #sin (pf -f a), we immediately ob-

tain the determinanta! ..juation

(p
3 -

fj. + .'to
1
) (p*

-
fi) 4/>

J
/i* = ( i

The condition that the particle of tin- -warm -h"uld keep together
is the same as th rendition that tin- roots of this quadratic should

be real and positive. The left-hand side is posit i \ . \\ hen p* = oo
,

and negative when />'
=

/* and p
s = ji-.S/, . Th. r ,

.juired condition
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is therefore ^ > 3/ 2
,
Art. 288. The condition that the swarm is

stable is therefore j^
> 3 .

Unless therefore the density of the swarm exceed a certain

quantity the swarm cannot be stable. If the mass of the sun were

distributed throughout the sphere whose radius is such that the

swarm is on the surface, the density of the swarm must be at

least three times that of the sphere.

The path of the particle C when describing either principal oscillation is

(relatively to the axes 7^, BTJ) an ellipse with its centre at B. Substituting the

values of , tj
in the equations of motion and using the quadratic, we find

?^!^ *4A_ / **

4 p* B^ \ n-3

Since /x,
lies between the values of ^2

,
the first equation shows that A

l/B l
and

AJli3 have opposite signs, and accordingly the radical is negative.

It follows that the oscillation which corresponds to the smaller value of p has

the major axis directed along #, while in the other that axis is along J3rj. The

particle also describes the ellipses in opposite directions, in the former case the

direction is the same as that of the swarm round the sun, in the latter, the

opposite.

If the centre of gravity of the swarm describe an ellipse of small eccentricity,

we may obtain an approximate solution of the equations of motion. Assuming
the expansions B = nt + 2e sin nt + J e2 sin 2nt

,

~
t

r (it

it is evident that all the coefficients of the differential equations (2) can be at once

expressed in terms of t, including all terms which contain e2 . It is however

unnecessary for our present purpose to write these at length. It is easy to see

that the equations become

eX= 4en cos nt y - 2e;i2 sin nt
t\ + 10e;i2 cos nt + &c.,

eY= - 4en cos nt
j-
+ 2en* sin nt+ cnz

coBnti} + &c.

As a first approximation we neglect eX, eY. Comparing the equations (5) and

(3) we see at once that we shall have the quadratic

e2}-4^n2= .................. (6).

The condition that the swarm is stable is then /*> n2
(3 + 5e2

) ; .'. ^ >
3 (3 + 5t'

2
).

It appears therefore that the gradual dissipation of a comet is more probable when

the trajectory is elliptical than when it is circular.
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As a second approximation, we substitute = A cos (pt + a), ij
= B sin (pt + a) in

the expressions A" and 1'. By Art. 303 the only important terms are those which

become magnified by the process of solution. These terms are of the form

Pcos(X + 7.) where X=jj or p2/t. Unless therefore the roots p t p' of the

quadratic (6) or (4) are such that pp' is nearly equal to n or 2w, the terms

derived from A', }' remain respectively of the order e or e3. This relation between

the roots cannot occur when e is small.

415. Tisserand's criterion*. When a comet describing a

conic round the sun passes very near to a planet, such as Jupiter,

its course is much disturbed. When it emerges from the sphere
of perceptible influence of the planet, it may again be supposed
to describe a conic round the sun, but the elements of the new

path may be very different from those of the old.

Since Jacobi's integral (Art. 255) holds throughout the motion,

the elements of both the conies must satisfy that equation.

Let (a , / ), (a l ,ll) be the semi-major axis and semi-latus rectum

before and after passing through the sphere of influence of the

planet. Let i'
, i\ be the inclinations of the planes of the comet's

orbit to the plane of the planet's motion.

Let the sun be taken as the origin of coordinates, and let

tin- axis of f pass through the planet P. Let r, p be the distai

of the comet Q from and P respectively and c = OP. Let 3f,

m be the masses of the sun and planet, then, reducing the sun

to rest (Art. 399), we regard the comet as acted on by the resultant

attraction of the sun and planet together with a force m/c? acting

parallel to PO. The Held of force is therefore defined by

U= M-+-*!.
/ p c-

\\ suppose that the planet P describes a circular orbit relatively

to with a constant angular velocity n, where n =
( }>f + wi)/c*.

The Jacobian integral takes the form

Tisserand's criterion may be found in his Note sur 1'integrale de Jacobi, et

BUT son application a la theorie dec cometes, Bulletin .Mn>m>m /</>, Tome vi.

1889, also in hi. Mtcanique C, . iv. 1896. M. 0. Callaudreau's add

von in the second chapter of his Ktude sur la theorie des cometes pe*riodiqoes,

Annalei de I'Obtervatoire de Parit, Mtmoirt*, 1892, Tome xx. There are also some

^tigationa by U. A. Newton on the capture of comets by planets, especially

Jupiter, American Journal of Science, vol. xi.n. pages 188 and 482, 1891.
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where V is the space velocity of the comet and A its angular

momentum referred to a unit of mass. Since (Art. 333)

the integral becomes

1 /I, ??i/l fcA 1 A ?w/l fA
5 + ttCOSlOA /4.+ TJ -- ; =S-+ 7lcosliA/irr+Tr -- ^ >

2a \M 1/V^o c
2
/ 2! y M M^ c-J

where
>,/><>; fnfi, are the values of f, p when the comet is respec-

tively entering and leaving the sphere of influence of the planet.

We obviously have p = p l ,
and since the comet does not stay long

within the sphere, we may neglect 1 when multiplied by the

very small quantity m/M. Writing then n2

M/c* as a close

approximation, Art. 341, we obtain the criterion

1 cosi' \/^o_ 1 cos ij V^
2a c\lc 2ai c^/c

416. Tisserand uses this criterion to determine whether two

comets both of which are known to have passed near Jupiter

could be the same body. If the criterion is not satisfied by the

known elements of the two comets, they cannot be the same body.

If it is satisfied it is then worth while to examine more thoroughly

how much the elements of either body have been altered by the

attraction of Jupiter. This must be done by using the method

of the planetary theory and is generally a laborious process.

In Tisserand's criterion the orbit of Jupiter is considered to be circular, which

is not strictly correct. This defect has been corrected by M. 0. Callandreau.

Taking account only of the first power of the eccentricity he adds a small terra

containing that eccentricity as a factor. This term, unlike those in Tisserand's

criterion, depends on the manner in which the comet approaches Jupiter.

417. Stability deduced flrom Vis Viva. The Jacobian integral has been

used by G. W. Hill * to determine whether the moon could be indefinitely pulled

away from the earth by the disturbing attraction of the sun. In such a problem

as this, it is convenient to take the origin at the earth P and the moving axis of

directed towards the sun 0. Reducing the earth to rest, the moon Q is acted on by

(m + m')jp
2
along QP and 3//c

2
parallel to OP. The Jacobian equation for relative

motion, Art. 255 (3), takes the form

* G. W. Hill's researches in the Lunar theory may be found in the American

Journal of Mathematics, vol. i. 1878.
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where p= PQ, r=OQ t cOP and /x is the sum of the masses w, m' of the earth

and moon. We treat the sun's orbit as circular and put as a near approximation
.= n-. Since p

a= {
2+ i7

3
,
this equation becomes

-C*.

Since the left-hand side is essentially positive it is clear that the moving particle Q
din never crots the surface defined by equating tlic riyht-hand side to zero, and can

only jnuve in those parts of space in ichich ttie right-hand side is positive. Art. 299.

If the initial circumstances of the motion make C" negative, the right-hand

side is always positive and the equation supplies no limits to the position of Q.

The form of the surface when 6" is positive has been discussed by Hill. When
C' exceeds a certain quantity the surface has in general three separate sheets.

The inner of these is smaller than the other two and surrounds the earth. The

second is also closed but surrounds the sun, the third is not closed. When the

constants are adapted to the case of the moon, that satellite is found to be within

the first sheet. It must therefore always remain there, and its distance from the

earth can never exceed 110 equatorial radii. Thus the eccentricity of the earth'."

i'1-liit hfing neglected, we have a rigorous demonstration of a superior limit to the

radius vector of the moon.

418. Ex. 1. If the moon Q move in the plane of motion of the earth P and
/ -J\

if also the sun is so remote that we may put - + Jr
3=f c2 1 1+^ j

when the left-

hand side is expanded in powers of /c and TJ/C, the bounding surface degenerates

into the curve -+n2f=C". It is required to trace the forms of this curve for
P

different positive values of C".

The curve has two infinite branches tending to the asymptotes .;j-^
2 =C'". If

C" is greater than the minimum value of /*/ + n'-'f
2 there is also an oval round

the body ,S. If the particle V is within the oval, it cannot escape thence and its

radius vector will have a superior limit. If the particle is beyond either of the

infinite branches, it cannot cross them and the radius vector will have an inferior

limit. The velocity at any point of the space between the oval and the infinite

branches is imaginary. [Hill.]

-'. A double star is formed by two equal constituents ,s, P whose orbits

are circles. A third particle Q whose mass is infinitely small moves in the same

plane and initially is at a distance from P on SP produced equal to half SP,

starting with such velocity that it would have described a circular orbit about

ul been absent. of no relative velocity is closed, and that

the particle being initially within that curve cannot recede indefinitely from the

attracting bodies S and /'.

This example is discussed by Coculesco in tin < \npt, > Hcndtu, 1892. He also

refers to a memoir of M. de Haerdtl, 1890, where the revolution of V roun.i

traced during two revolutions and it is shown that at the end of the third the

particle is receding from A '.

nce writing the above the author has received Darwin's memoir on Periodic

Orbits, Acta Mathematt ii the motion of a planet about a binary star
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Theory of Apses.

419. When the law of force is a one-valued function of the

distance, every apsidal radius vector must divide the orbit sym-

metrically.

Let be the centre of force, A an apse (Art. 314). The

argument rests on two propositions.

(1) If two particles are projected from A with equal velocities,

both perpendicularly to OA but in opposite directions, it is clear

that (the force being always the same at the same distance from 0)
the paths described must be symmetrical about OA.

(2) If at any point of its path, the velocity of the particle

were reversed in direction (without changing its magnitude), the

particle would describe the same path but in a reverse direction.

If then a particle describing an orbit arrive at an apse A, its

subsequent path when reversed must be the same as its previous

path. Hence OA divides the whole orbit symmetrically.

We may notice that if the law of force were not one-valued,

say F=/JL {u *J(u
2

a-}}, where the apsidal distance OA = a, the

first proposition is not true, unless it is also given that the radical

keeps one sign.

420. There can be only two apsidal distances though there

may be any number of apses.

Let the particle after passing an apse A arrive at another

apse B. Then since OB divides the orbit symmetrically, there

must be a third apse C beyond B such that the angles AOB,
BOG are equal and 00=0A. Since 00 divides the orbit sym-

metrically, there is a fourth apse at D, where OD = OB and the

angles BOG, COD are equal. The apsidal distances are therefore

alternately equal, and the angle contained at by any two con-

secutive apsidal distances is always the same.

has been more thoroughly studied. Taking a variety of initial conditions he has

traced the subsequent paths of a particle of insignificant mass. Some of the

paths thus presented to the eye have such unexpected and remarkable forms that

the paper is full of interest.
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421. Example*. K.r. 1. Show that an ellipse cannot be described about a

centre of force whose attraction is a

one-valued function of the distance

unless that centre is situated on a

principal diameter and is outside the

evolute.

By drawing all the tangents to one

arc KF of the evolute we see that they

cover the whole area of the quadrant
>f the ellipse. It follows that a

normal to the ellipse can be drawn

through any point P situated in this

quadrant, and this normal does not divide the ellipse symmetrically, unless P lies

between E and A or between F' and B.

J. If the path is an equiangular spiral and the central force a one-valued

function of the distance, prove that the centre of force must be situated in

the pole.

.:. If a particle of mass m be attached to a fine elastic string of natural

length a and modulus X, and lie with the string unstretched and one extremity

fixed on a smooth horizontal plane ; prove that, if projected at right angles to the

string with velocity v, the string will just be doubled in length at its greatest

extension if 3;nr- = 4\. [Coll. Ex.]

1. A particle is projected from an apse with a velocity r, prove that the

apse will be an apocentre or a pericentre according as the velocity v is less or

greater than that in a circle at the same distance.

422. The apsidal distances. ToJmd the apsidal ditto

F=fjiu
n

, "in! // is an integei\

The equation of vis viva, viz. v2 = C 2 fF<

Let V be the velocity at the initial distance R, $ the angle of

l>p.j-rti..M. thru

I' ''
"",

'

i,= VR*in0 ........
// 1 \JKJ

Thus both A and f aiv known (plant itirv. at an apse it \> a ma\-

niin. and therefore du/dd = 0. The apsidal distances are therefore

given lv

I in <jnati .ii is arranged in descending powers of the

quantity by Descartes' theorem that tln-iv animt be

1 1 inn positive roots than variations of sign Tin- arrangement of

the terms of equation (A) will depend on whether n \ is greater
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or less than 2
; but, since there are only three terms, it is clear

that in whatever order they are placed there cannot be more than

two variations of sign. The equation cannot therefore have more

than two positive roots. This is an analytical proof that there

cannot be more than two real apsidal distances.

423. If 11 is a fraction, say n = p/q in its lowest terms, we write J/ = M-; the

indices of w are then integers and w and therefore u can have only two positive

values. It is assumed that if q is an even integer the sign of F is given by some

other considerations, for otherwise F would not be a one-valued function of u.

424. The propositions proved in Arts. 420 and 422 are not

altogether the same. The complete curve found by integrating

(A) may have several branches separated from each other so that

the particle cannot pass from one to the other. In 420 it is

proved that the actual branch described cannot have more than

two unequal apsidal distances. In 422 it is proved that when

F=fj.u
n all the branches together cannot have more than two

unequal apsidal distances.

If the force be some other one-valued function of the distance

the complete curve may have more than two unequal apsidal

distances.

Ex. 1. If I

J
=A (u

-
a] (u

-
b) (u

-
c) be the differential equation of

an orbit, prove that the central force is a one-valued function of the distance.

Prove also that the curve has two branches and three unequal apsidal distances,

and that either branch may be described if the initial conditions are suitable. See

Arts. 309, 441.

Ex. 2. If the central force is F=fj.u
n

,
where n>3 and the velocity is greater

than that from infinity, prove that the apsidal distances lie between p and q, where

2fi= hz
(n-l)p

n~3 and W=Cq2
. [This follows from a theorem in the theory of

equations applied to equation (A) of Art. 422.]

426. The apsidal angle. To find the apsidal angle when

F= /jiu
n

,
where n< 3, and the orbit is nearly circular.

The equation of the path with these conditions has been found

by continued approximation in Arts. 367 to 370.

Taking the first approximation, we see by referring to the

equation (6) of those articles that dufdO is zero only when

p& + a = ITT, where i is any integer. These values of 6 therefore

determine the apses and the reciprocals of the two corresponding

apsidal distances are c(\M). The apsidal angle described

between two consecutive apses is therefore ir/p, where p
2 = 3 n.



ART. 4*27.] THE APSIDAL ANGLE. 27o

Taking the higher approximations, we use the equations (12)

and (13) in the same way. The apsidal angle is therefore ir/p, where

/>
= V(3

-
n) (1

- ^(n - 2)(n + I)M*}.

The reciprocals of the apsidal distances are very nearly c (1 M).

427. There is another method of finding the apsidal angle which is founded

on a direct integration of the equations of motion*. Beginning with

d-ti _fM*-*

we have, as in Art. 4

*(%)'-&*"-*+<'>
let u = a, w = 6 be the reciprocals of the inner and outer apsidal distances. Since

the right-hand side of the equation must vanish for each of these values of u, we have

2p 2/z

n - 1
" '

n - 1

Eliminating ft
2 and C we find

-', &2
,

1

To find the apsidal angle we have to integrate the value of do from u = 6 to a.

To simplify the limits we put a=c(l + M), 6=c(l-3/) and i/=c (1 + &Ix) ; the

limits of integration are then x= - 1 to + 1. Also since the orbit is nearly circular,

we suppose M to be a small quantity.

It now becomes necessary to expand A in powers of M. This may be effected

by using some simple properties of determinants. If we subtract the upper row

from each of the other two, the determinant is practically reduced to a determinant

of two rows. Noticing that

where C=(n-2), D = J (n-2) (n-3), =^ (n-2) (n -3)(n-4), we see that the

new determinant is

. f 2+.V, 1,

Subtracting one row from the other and performing some evident simplifications,

we find

where A' = 2c+> J/ 3
(n

-
1) (n

-
3). We thenoe deduce

ie method of finding the apsidal angle by a direct integration of the

apsidal equation was first used by Bcrtrand, Comptft Rendtu, vol. 77, 1878. An

improved version was afterwards given by Darboux in his notes to the Court dt

Mfcaniquf by Despeyrons, 1886.

K. A 18
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In the same way we find after some reductions

(a*-
1 -

&"-i)*= { 2C*-
1M (n

-
1) }* {

I +^ (n
-

2) (n
-

3) M- } .

Remembering that du= cMdr, these give

The integrations can be effected at sight by putting #=sin<. Taking the

limits to be 0= ^TT to make the apses adjacent, we find that the apsidal angle is

24

428. Closed orbits. An orbit is described about a centre

of force whose attraction is a one-valued function of the distance.

Prove that if the orbit is closed, for all initial conditions within

certain defined limits, the law of force must be the inverse square
or the direct distance. [Bertrand, Comptes Rendus, vol. 77, 1873.]

If the path is closed and re-entering it must admit of both

a maximum and a minimum radius vector. The orbit therefore

has two apsidal distances and must lie between the two circles

which have these for radii and their centres at the centre of

force. By varying the initial conditions we may widen or diminish

the space between the circles, yet by the question the orbit is

always to be closed so long as the radii of the circles remain

finite.

Representing the first approximation to the reciprocals of the

radii by c (1 M) the apsidal angle will be ir/p, where p can be

expressed in some series of ascending powers of M. The orbit

cannot be closed unless the apsidal angle is such that, after some

multiple of it has been described, the particle is again at the

same point of space and moving in the same way. Hence p must

be a rational fractionfor all values of M whether rational or not.

The coefficients of all the powers of M must therefore be zero,

while the term independent ofM must be a rational fraction.

When F=fj,u
n the series forp is (Art. 426)

p = V(3 - n) {1
-

Jj (n
-

2)( + I)M* + &c.).

Since the coefficient of M* must be zero we see that n = 2 or 1,

i.e. the law of force must be the inverse square or the direct

distance. In either case the condition that V(3 n) should be a

rational fraction is satisfied.

If we take the most general form for the force, we have

F=u*f(u). We know by Art. 368 that the first term of the
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series for p is, in general, a function of c, i.e. of the reciprocal of

the mean radius. Since this can be varied arbitrarily the apsidal

angle cannot be commensurable with TT unless this first term,

\ix. c/'(c)//(c), is independent of c. Putting this equal to a

constant ra we find by an easy integration that/(c) = /JLC. Hence

F= fj,u
m+\ The general case is therefore reduced to the special

case already considered.

429. Classification of orbits. Tlie force being F=/j.u
n it is required to

classify the various forms of the orbit according to the number of the apsidal

distances *. We suppose n to be positive and h not to be zero.

Arranging the apsidal equation (A) (Art. 422) in descending powers of w, it

takes one or other of the three following forms

according as n>3, ;t lies between 3 and 1, and n<l.

The two constants C and h determine the energy and angular momentum of the

particle, Art. 313. When these are given, we arrive, by integrating (A), at an

equation of the form B + a=f(u). By varying the constant a we turn the curve

round the origin without altering its form. It follows that when C and h art

known, the orbit is determined in form but not in position. The curve thus found

may have several branches which are not connected with each other. One point

on the orbit must therefore also l><' tiiren to tlftcntiun' the value of a. and to distin<ini*h

the branch actually described by the particle.

Any point on the curve being taken as the point of projection, we may regard v

as the initial velocity. We thus have C= t/-- Vf or C=va+F 2
, where V

l
is the

velocity from infinity, and K the velocity to the origin. The first equation is to

be used when K, is finite, i.e. when n>l; the second when V is finite, i.e. when
n<l. See Art. 813.

43O. CAM I. Let the curve have but one apsidal distance. The right-hand
side of the apmdal equation (A) must change sign once as u varies from zero to

infinity. Hence, when n>8, C is negative or zero, i.e. the velocity v is less than

or equal to that from infinity ; when ;i lies between 8 and 1, C must be positive or

zero, i.e. the Telocity v is greater than or equal to that from infinity. Lastly we
see from the third form of the equation (A) that when n < 1 the curve cannot have

only one apsidal distance.

*
Korteweg, Sur let trajectoires dcriU$ sow I'influence d'une force centmlf.

Archives Sterlandaise*, vol. Jin. 1884, discusses the forms of the orbits, the con-

us of stability and tbe asymptotic circlet. Oreenhill, On the stability of

vol. xxn. 1888, treats of the asymptotic circles which

can be described when F=nu* for various values of n.

182
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These conditions being satisfied, let w = o be the reciprocal of the apsidal

distance, found by solving the equation (A). We then have

where
<j> (u) cannot change sign as u varies from to oo . Since

<f> (u) must have

the same sign as the highest power of u, its sign is positive or negative according

as n > or < 3.

We notice that if n is a fraction, say n=plq, we replace the factor u - a by ic - b

where n=w <l
,
a= bq ; Art. 423. As in most cases the force F varies as some

integral power of the distance, it will be more convenient to retain the form given

above.

Since the left-hand side of (2) is necessarily positive, the whole of the curve

must lie inside the circle u a if n>3, and must lie outside that circle if n<3.

Suppose the particle, as it moves round the centre of force, to have arrived at the

apse. It will then begin to recede from the circle and must always continue to

recede because du/dd is not again zero. The orbit has therefore two branches

extending from the apse to the centre of force or to infinity according as n> or < 3.

The apse is an apocentre in the first case and a pericentre (as in a hyperbola

described about the inner focus) in the second case.

The motion in the neighbourhood of the apse may be found by writing u=a+ x
and retaining only the lowest powers of x. We then have

where 44/ 2=0 (a). The path is therefore such that the particle describes a finite

angle while it moves from u=u to u=a. Since dd/dt= hu- is finite, the time of

describing this finite angle is also finite.

431. Cases II. and III. To find the conditions that there may be either two

apsidal distances or none. The apsidal equation must have two positive roots or

none. The condition for this is that the right-hand side of (A) must have the

same sign when w=0 and M=OO .

First. Let n>3, this condition requires that C should be positive and not

zero. The velocity at every point must therefore be greater than that from infinity.

To distinguish the cases we find the max-min value M of the right-hand side

by equating to zero its differential coefficient. We thus find

H /h-\ K
_ n-1

M=-~( ]+C, K= x.
K \fJLj 71-3

Taking the second differential coefficient we find that M is a minimum when 71> 3

and a maximum when n<3.

We notice that when n>3, the two terms of M have opposite signs and that

we can make either predominate by giving h or C small values. Thus M may
have any sign if the initial conditions are suitably chosen. The path may there-

fore have either two apsidal distances or none; there will be two if M is negative

and none if M is positive. If M=0 the apsidal distances are equal.

Secondly, let 3>n>l. The right-hand side of (A) cannot have the same sign

when w=0 and M= QO unless C is negative. The velocity at every point must there-

fore be less than that from infinity.
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Writing as before

*'= ,

we shall prove that M is necessarily positive and has zero for its least value. Then
since the right-hand side of (A) is negative when u=0 and u= oo and is equal to

the positive quantity M for some intermediate value, there must be two apsidal
distances which can be equal only when 37 = 0.

To prove that M is positive, we notice that M is least when h is greatest.

Since h = vrsiup (Art. 313) this occurs when h = vr, i.e. when the particle is

projected perpendicularly to the radius vector. Substituting this value of h and

remembering that C=v*-V
l*, we can see by a simple differentiation that M is

again least when v*=nlr*-
1
, that is, when the velocity is equal to that in a circle.

This value of v is less than the velocity from infinity (n being < 3), and is there-

fore admissible here. Substituting this value of v we find that the minimum
value of .17 is zero. The value of M is therefore positive and is zero only when

the path is a circle.

We may also prove that the orbit has two apsidal distances by observing that

since the velocity is insufficient to carry the particle to infinity, the orbit must

have either an apocentre or must approach an asymptotic circle. In either case

the apsidal equation has one positive root and therefore has another.

Thirdly, let 1>. Since C= r2+ F 2 we notice that C must be positive. WI-

DOW have

1-n

we may prove in the same way as before that A7 is least when h = vr and t?
2
=/n/r"~

1

and that then .17= -J^ rl- n+K 2=0 by Art. 312. Thus M is always positive

and the curve has two apsidal distances which can be equal only in a circle.

erify this result by noticing that since an infinite velocity is required to

carry the particle to infinity (n being <1, Art. 312), the orbit must have an

apocentre or approach an asymptotic circle. The apsidal equation must therefore

have two positive roots.

432. It follows from what precedes that the curve defined by the apsidal

equation (A) can be without an apse only when n>3. In that case the orbit

extends from the centre of force to infinity.

We arrive at the same result by noticing that if there is DO apse, the velocity

must be sufficient to carry the
\> linittj. If 1 > n this condition cannot be

satisfied (Art. 312). If ;i>l this condition requires C to be positive and it is

evident that the second form of the apsidal equation has then a positive root.

It also follows that there can be an asymptotic circle only when rt>8. For if

the orbit be ultimately circular the constant .17 must be zero, and this cannot

happen when n<3 unless the orbit is circular throughout. See also Art. 447.

433. To find the motion when the orbit has two apsidal distances. If a, b be

the reciprocals of these distances, the apsidal equation (A) takes the form
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where 0(w) is positive or negative according as ?i> or <3. Since the left-hand

side is necessarily positive we see that u cannot lie between the limits a and b if

<f> (u) is positive but must lie between them if
(it)

is negative. The whole curve

must therefore lie outside the annulus defined by the circles u=a, u= b if n>3, and

must lie within that annulus if n < 3.

It appears that when n> 3 the full curve defined by the differential equation (A)

contains two distinct branches, either of which can be described by the particle

with the given energy \C and the given angular momentum h. These, being

separated by the empty annulus, do not intersect, so that when the point of pro-

jection is given the particular branch described by the particle is determined. We
notice also that this branch has only one apsidal distance though the complete
curve has two.

When n<3 the path of the particle undulates between the two circles u=a,
u = 6, touching each alternately and being always concave to the centre of force.

434. Caae IV. To find the motion when the apsidal distances are equal.

The apsidal equation now takes the form

The motion as the particle approaches the circle u=a may be found by putting

u=a+x and retaining only the lowest powers of x. We then have

where w2= <(a)//i
2
. The particle therefore approaches the limiting circle in an

asymptotic path and arrives at the circle only when = oo. Since ddjdt (being

ultimately equal to ho?) is finite, the time of describing an infinite number of revo-

lutions round the centre of force is infinite.

The conditions that the right-hand side of the apsidal equation (A) may have

a square factor and be positive are (1) the coefficients of the highest and lowest

powers must be positive, and (2) we must have M=0, Art. 431. If 7i>3, C must

be positive, i.e. the velocity at every point must be greater than that from infinity.

If n<3 the coefficient of the highest power of u is negative, and there can be no

asymptotic circle. (See also Art. 432.)

435. When w>3 and it is known that the path has an apse, we may prove

that that apse is a pericentre or apocentre according as the velocity of projection is

greater or less than the velocity in a circle at the same distance. Let v be the

velocity of the particle, Vz the velocity in a circle at the same distance r, Vl the

velocity from infinity; then (Art. 313)

(1),

(2).

If r=r
x represent any apsidal distance, we have at that apse v2

/p=F, VJ/rl
= F.

At a pericentre the orbit lies outside the circle of radius rlt hence p>i\ and

.. v2> F2
2

. At an apocentre the orbit lies inside the circle and v2< Fa
2
.

It follows by inspection of (2) that at a pericentre both sides of that equation

are positive, and, since Vl
decreases when r increases, both sides must continue to

be positive as the particle recedes from the origin. The particle also cannot arrive

at a second apse, for this requires the left side to become negative. In the same

way at an apocentre the two sides of (2) are negative and must continue to be

negative as the particle approaches the origin. The conclusion is that the velocity
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at any point ix greater or less than that in a circle at the tame distance according as

the path has a pericentre or apocentn .

It follows also that the path described cannot have both a pericentre and an

apocentn.

43. The following table sums up the possible orbits when F=/LCU
W

.

n>3, t'SLFj {one apsidal distance, path inside the circle.

v>V
l (two apsidal distances, path inside or outside both circles

M negative \ according as v is < or > F2
.

r >
I'j (no apsidal distance, the path extends from the centre of force

M positive ( to infinity.

r > V
l

(an asymptotic circle, approached from within or from without

M=Q ( according as v is < or > T2 .

3>n>l, r>I'i {one apsidal distance, path outside the circle.

v<l\ {two apsidal distances, path between the circles.

l>n, v<V
l {two apsidal distances, path between the circles.

Here Fa is the velocity in a circle at the distance of the point of projection.

When the force F=pun is repulsive show that the path, if not rectilinear,

has a pericentre with branches stretching to infinity.

437. The motion in the neighbourhood of the origin is found by retaining the

highest powers only of it. We thus have by (A), Art. 429,

according as n>3 or <3, where (n-l)B2
=2/x. The first alternative gives after

integration, supposing the particle to be approaching the origin,

where
|>
= }(n-3), <f

= i(n + l); showing that the particle (except when n = 3)

describes a finite angle in a finite time when the radial distance decreases from

r= rc to zero.

negative sign in the second alternative shows that, when n<3, the particle

cannot reach the origin unless /i = 0, i.e. unless the path is a radius vector.

438. Th, motum at ,ni infinite distance from th,- origin is found by retaining

the lowest power* only of u. We then have

according as n> or <1. The negative sign in the second alternative shows that

when n < 1 the curve can have no branches which extend to infinity.

When C is positive, i.e. when the velocity v of projection is greater than that

from infinity, the first alternative leads to

showing that when the particle travels from r=r to infinity it describes a finite

angle $ round the origin, and that the time is infinite. The path therefore tends

to a rectilinear asymptote whose distance from the origin is - de/du^h/^C.

If however C = 0, i.e. the velocity v of projection is equal to that from infinity,

the lowest existing power of u in the apsidal equation (A) is u1 or a*" 1
. We
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then have

according as n>3 or n<3 but >1. The first alternative shows that (except when

Ji = 0) there are no branches leading to infinity. The second alternative, i.e. n<3,

gives, supposing the particle to recede from the origin,

where (n- l)B-= 2fj. t p=-$(3-n), q = ^(n+l). These equations show that as

the particle proceeds from r=r to infinity it describes a finite angle in an infinite

time. The path tends to a rectilinear asymptote at an infinite distance from the

origin.

439. Stability of tne orbits. Referring to Art. 436 we see that when n>3
the orbit extends to the origin or to infinity except when the particle is approaching

an asymptotic circle. The existence of such a circle depends on the equality of the

factors of the right-hand side of the apsidal equation, and a slight change in the

constants (7, h may render the factors unequal or imaginary. In either case the

new path will lead the particle either to the centre of force or to infinity. Such

orbits may be called unstable.

When n<3 and the velocity of projection less than that from infinity, the path

is restricted to lie between the two circles u= a, u=b, and the values of a and 6

depend on the constants C and h. Any slight disturbance will alter the values of

these constants, but the orbit will still be restricted to lie between two circles

though the radii will not be exactly the same as before. Such orbits may be called

gtable.

440. Ex. Prove that any small decrease of the angular momentum h or

increase of the energy \ C' will widen the annulus within which the particle

moves; that is, will increase the oscillation of the particle on each side of the

central line.

441. Apsidal boundaries when F= f(u). When the law of force contains

several terms the argument becomes more complicated. Let F=SJ nM
n

,
then

Transposing the terms, the apsidal equation is

=
(
-

i) (M
-

2) . .. (u
-
aj (M),

where a,, a2 ,
... are positive quantities arranged in descending order, and (n)

contains all the factors which do not vanish between w= and w=oo . The factor

(u) keeps one sign, viz. that of the highest power of u.

Let us divide the plane of motion into annular portions by circles whose

common centre is at the centre of force and whose radii are the reciprocals of a x ,

o2 ,
&c. Then since (dujdd)

2
changes sign when u passes any one of these

boundaries, it is clear that the curve defined by the differential equation (B) can

have branches only in the alternate annuli, the intervening ones being vacant. The

space between M = a
x
and ?t=o> being occupied or vacant according as

<f> (u) is

positive or negative.
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If the initial position of the particle lie between any two contiguous circles,

the subsequent path is restricted to lie between these circles and touches each

alternately. If the initial position lie outside the greatest circle or inside the

least, the subsequent path must also lie outside or inside these circles and must

therefore extend to infinity or to the centre of force.

442. Next, let some of the factors of the apsidal equation be equal, say

where /(M) has been written for the remaining factors. To determine the motion

in the neighbourhood of the circle n = a, we write it = a + x and retain only the

lowest powers of jr. We then have, supposing in > 2,

If* 1 1 BK

where B2
=f(a) 0(a), and jc=&(m-2). The case in which HI = 2 is discussed in

Art. 434. We nee that the circle u=a is asymptotic. The particle arrives at the

circle after describing an infinite number of revolutions round the centre of force

and at the end of an infinite time.

443. Let us trace the surface of revolution whose abscissa is r and ordinate

z = Fr*, and let the ordinate z be perpendicular to the plane of motion of the

particle. We notice that this surface is independent of the initial conditions and

that its form depends solely on the law of force.

It is easy to see that the ordinate z corresponding to any value of r represents

the square of the angular momentum in a circular orbit described with radius r.

It will therefore be useful also to trace the plane whose ordinate is z h'\ where h is

the angular momentum of the path described.

By describing circles whose radii are the abscissae of the maximum and

minimum ordinates of the surface, we may divide the plane of motion into

annular portions in which the function z = Fr3 is alternately increasing or decreas-

e/in/ r</ from the centre of force. These we may call the ascending or de-

tomding portions of the surface.

444. If r represent any apsidal distance, we have at the corresponding apse

v*jp = F and r = /i/r; hence h- = Fpr*. At a pericentre the orbit lies outside the

of radius r, hence /r, and the angular momentum h of the path must be

greater than that in a circle of radiu* / . In the same way, at an apocentre the

orbit lies inside the circle, and the angular momentum h is less than that in a

circle of radius r.

Referring to the surface z=Fr*, we see that a pericentm , = 0.4 must

if A A' It** than th.it <>f the plane z = h*, and an tip<>,

OB must have an < than that of the plane. It immediately
follows that if A, D are the pericentre and apocentre of the same path, both the

'.< A', ', cannot lie on the tame descending portion of the surface. This con-

ion does not apply if A, B are the pericentre and apocentre of different branches

of the complete curve; (Art. 441).

We infer from this result that an annular space on the plane of motion (Art.

in whirl, !;- decreases outwards has this element of instability, vis. that a

path having both a pericrntre ./,/ <m apocentre cannot be described within the space.

If the path have a pericentre the particle will leave the space on its outer margin;



282 THEORY OF APSES. [CHAP. VI.

if an apoceutre it will move out of the space on its inner boundary. We see also

that when the particle has left the annular space it must proceed to infinity or to

the centre of force, unless it come into some other external annular space in which

Fr3 has increased sufficiently to exceed the h- of its own path or into some internal

space in which Fr3 has become less than /i
2
.

445. We may also deduce this result very simply from the radial resolution.

As the particle approaches and passes an apocentre r increases to a maximum and

decreases, hence drjdt changes sign from positive to negative and d'-V/dt
2 is

negative. In the same way, when the particle passes a pericentre, ftr/di
2

is

positive. It immediately follows that at an apocentre Fra>h* and at a pericentre

Fr*<h*.

446. If the orbit have an asymptotic circle r=a, the angular momentum h

must be equal to that in a circle of that radius. Hence the asymptotic circle must

be the projection of some one of the intersections of the surface z = Fr* with the plane
z= W; (Art. 443).

As the asymptotic circle is itself an apocentre or pericentre, it follows, as in

Art. 445, that when the particle is approaching the circle from within /i
2 - Fr3 is

negative and ultimately zero. Hence Fr3 is decreasing outwards. When the

particle is approaching the circle from without h2 - Fr3 is positive and ultimately

zero, hence Fr3 is increasing inwards. In either case it follows that only those

intersections ivhich lie on a descending portion of the surface z = F)'3 can correspond

to asymptotic circles.

As each descending portion of the surface can have only one intersection with

the plane z= h2
, there cannot be more asymptotic circles than descending branches.

There may be fewer asymptotic circles than descending branches because two

conditions are necessary that an asymptotic circle of given radius r=a should

exist ; (1) the angular momentum must be equal to that in the circle, and (2) the

constant C must be such that the velocity at a distance r=a is equal to that in the

circle, i.e. v2/a=F.

447. As an example, consider the force FfjMn
. If n>3, the surface z= Fr*

has only a descending portion, there can therefore be one and only one asymptotic

circle. Also the path described cannot have both an apocentre and a pericentre,

though different branches of the same curve may have one an apocentre and another

a pericentre. See Arts. 444, 446, 436. If n<3, the surface z = Frs has only an

ascending portion. Hence there cannot be an asymptotic circle, but the path can

have both an apocentre and a pericentre.

448. Ex. Discuss the properties of the surface Z= Fr-vz
, where the

velocity v is a known function of r given in Art. 441. Prove that (1) the abscissae

of its max-min ordinates are the same as those of the surface z = Fr3
,
so that the

ascending and descending portions of each correspond (Art. 443) ; (2) each

asymptotic circle must be one of the intersections of the surface with the plane of

motion; (3) conversely, if at any intersection we also have z= /i
2
,
that intersection

is an asymptotic circle.

The first result follows from ,
=- ~. To prove the second and third we

ar r* ar



A1JT. 450.] LAW OF FORCE IN A CONK. 283

notice that when Z = 0, the velocity is equal to that in a circle; and when z* A2 , the

angular momentum is equal to that in a circle.

449. Examples. /:./-. 1. Find the law of force with the lowest index of u

such that an orbit can be described having two given asymptotic circles whose

radii are the reciprocals of a and I, and find the path. Find also the conditions of

projection that the path may be described.

Referring to Art. 441 we see that the right-hand side of the apsidal equation (B)

must be M ("
-

)
a
(u

-
6)

s
. We then find

F= fjM- (u
-

a) (u
-

b) (2u
- a - b) + p.

and the angular momentum at projection must be Jn'.

2. Let F=HH- [(u-a)(3u-a-b)+cu], where F is the central force. If

the conditions of projection are such that h-=nc and the velocity v when n=a is

t'
2
=/*ca

3
,
show that the path is - - =(tanh 0)

2
, where c 2=2 (a -b). Show also

that the curve has two infinite branches tending to the same asymptotic circle

u= a, with an apse at a distance 1/6.

i. A particle arrives at an apse distant r from the centre of force with a

velocity v equal to that in a circle at the distance r. If the velocity be reversed in

direction, will the particle describe the same path in a reverse order or will it

travel along the circle? See Art. 419.

At such an apse the radius of curvature p of the path must be equal to r. But

since -= " + 3^5 at any apse this requires that d?uld6- = Q. The apsidal equation
p dO3

(B) of Art. 441 must therefore have equal roots, and the apse is at the extremity of

a path with an asymptotic circle. The particle therefore can never arrive at such

an apse in any finite tim> (Art. 442).

If the particle be projected from a point on the asymptotic circle with the

given values of r and h it may be said to describe either orbit, for the deviation of

one from the other is indefinitely small at the end of any finite time.

Boussiuesq, Comptes Rcndu*, vol. 84, 1877, considers the circular motion to be a

singular integral of the differential equation. Eorteweg and Greenhill have also

discussed this problem.

On the law offorce l>/ >//,/< 7, a conic is </

450. Newton's theorem*. An orbit is described by a

particle about a centre of force C whose law is k< <t is

'ired to of force l>?/
/////>// the same orbit can be

described abo of force 0.

* Newton'i theorem is gi i. Cor. 8 of the second section

first book of tli- ion to the motion of A particle in a circle

acted on by a force parallel to a fixed direction follows in the next propoci:
sir \v. i;. Hamilton's paper, giving the law F = nrlp*. is in the third volume of the

Proceeding* of the I>, ,y t 1846. Villarceau in the Connai$tance det Tempt



FORCE IX A CONIC. [CHAP. vi.

Let F, F' be the forces of attraction tending respectively
to C and 0. Let (77, OZ be the

perpendiculars on the tangents
z

at any point P ;
CP = r, OP = r'.

Then since sin CPY= CY/r, we

have

and CGY

Similarly F' - -^ ,
. . p

-
^

-^j
If we draw CG parallel to OP, the triangles

are similar, and
OZ CY F' _ h'z CG3

OP
=
CG '

" F
= W TV '

If then P is given as a function of r, the law of force F' tending
to any assumed point is also known, when we have deduced

CG as a function of r and / from the geometrical properties of

the curve.

Remembering that the area A = ^ht, we see that the periodic

times in which the whole curve is described about G and

respectively are inversely as the arbitrary constants h and li.

By choosing these properly we can make the ratio of the periodic

times have any ratio we please.

We also notice that if the time of describing any arc PQ is

known when the central force tends to (7, the area PCQ is

known. Now the area POQ differs from this by a rectilinear

for 1852, using Cartesian coordinates, arrived at two possible laws of force.

Afterwards Darboux and Halphen investigated two laws equivalent to these, and

proved that there is no other law in which the central force is a function only of

the coordinates of its point of application. Their results may be found in vol. 84

of the Comptes Rendus, 1877. The investigations of Darboux were reproduced by
him at somewhat greater length in his notes to the Cours de M^canique by

Despeyrous, 1884. There is a third paper by Glaisher in vol. 39 of the Monthly

Notices of the Astronomical Society, 1878, who also gives the expression (2irl*J/j.) zzr*

for the periodic time. Darboux uses chiefly polar coordinates, while Halphen

employs Cartesian, beginning with the general differential equation of all conies:

Glaisher simplifies the arguments by frequently using geometrical methods.

There is also a paper by S. Hirayama of Tokyo in Gould's Astronomical Journal,

1889.
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figure whose area can therefore be found. Hence the area POQ
and therefore the time of describing the same arc PQ when the

central force tends to can be found.

451. Suppose the orbit is a conic, then the force tending to

the centre C is F=pr, and h = Jp.ab. It immediately follows

that the force tending to any point is F' = -
. ^- . If, for

example, is a focus, it is a known geometrical property of a

conic that G lies on the auxiliary circle and that therefore CG = a.

We then have F' =
fjt,'/r'*,

where ti- = p'fr/a.

452. Parallel forces. To find the force parallel to a given

straight line by which a conic can be described. See Art. 323.

Let the point be at an infinite distance, then in Newton's

formula PO and CG remain parallel to the given straight line

throughout the motion. Also the length r' = OP is constant.

The required law of force is therefore F' =
//.

. CG3
,
where /* is

some constant.

If the direction PO of the force at P cut the diameter con-

jugate to CG in N, we have CG.PN = b'*, where b' is the semi-

diameter parallel to CG. The law of force may therefore also be

written F' = A/PN*, where A =/*&'".

To find the constant p, we notice that in any central orbit,

the velocity being v = h/p, the component of the velocity per-

pendicular to the radius vector r' is hjr'. In our case when the

16 acts parallel to a given straight line this component is con-

stant. Representing this transverse velocity by Vt
the Newtonian

V9

formula of Art. 451 becomes F' = . CG*.
a-b-

453. Hamilton's formula. A particle describes a

're of force situated at any point 0. It is required to

find the law of force. Taking tin- MUM<> notation as in Newton's

theorem, we let /'. /' 1. <

i

1

tending respectively to th

centre C and the point 0. Then (Art. 450)

/'

It is a geometrical property of a conic that, if p and v are tin-

1>. 1],, n.lirulars drawn from P and the centre C on the polar lin
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of 0, =
77y-

It follows that the law of force tending to is

F'-^. f
j

r', where p and r' vary from point to point of the

curve and h', a, b and to- are constant.

If we write the Hamiltonian expression for the force in the form

F'=fir'/pP,vre see that the angular momentum h'=*JfjL.ab/'&*, where

as before -BJ is the perpendicular from the centre on the polar line.

From this we easily deduce the periodic time in an elliptic

orbit. Remembering that the whole area is Trab, the formula

A = %h't gives as the time of describing a complete ellipse

454. To find the time of describing any portion of the ellipse

irith Hamilton s law of force. The coordinates of any point P
referred to an origin at the centre of force with axes parallel

to the principal diameters are

x = a cos
</> /, y = b sin

<f> g,

where
</>

is the eccentric angle of P and /, g the coordinates of

the centre of force referred to the centre of the curve. Then, if

h be the angular momentum,

hdt = xdy ydx = (ab fb cos
<f> ga sin

</>) d<f>,

.'. lit = ab<> fb sin
<j>
+ ga cos

</> ga,

where the time is measured from the passage through the apse
from which

<j>
is measured. This, if required, can be expressed

in terms of x and y,

This result can be deduced at once from the formula A =
\ht, by

equating A to the excess of the area of the sector AGP (viz.

over the sum of the triangles A CO, OOP.

* The following is a short analytical proof: Let the conic be Axz+ Byz=l and

let /, g be the coordinates of 0. The polar line of O and the tangent at P are

respectively AfS+Bgii = l, Ax+Byi)=l.
The perpendiculars from P and 0, viz. p and OZ, are therefore

_ 1 - Af.r
-

Ji.,,1 QZ _ l-Afx-Bgy~
'

~ *

The perpendiculars from the centre, viz. w and CY, are found by replacing the

numerators by unity. It follows that plOZ=zvlCY.
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The time of describing an arc of a hyperbola or parabola may
be found by proceeding as in Arts. 348, 349.

455. Examples. Ex. 1. Deduce from Hamilton's expression (1) the

central force to the focus of a conic, and (2) that to the centre. [In the latter

case w and p are both infinite but their ratio is unity.]

Ex. 2. A particle describes an ellipse whose centre is C under the action of a

centre of force F situated at a point R in the major axis. If the tangent at P cut

the major axis in T, prove that the force F varies as RP . (CTJRT)*.

456. The Hamiltonian expression for the force may be put
into two different forms.

>, we have the form F=fir/p* (Art. 453).

Secondly. Let OA, OB be two tangents drawn to the conic

from the centre of force 0, and let PL = a, PM=
j3, PN=y;

these being the three perpendiculars drawn from any point P on

the sides of the triangle OAB. By a property of conies we have

aft = fey*, where K is a constant for the same conic. The central

force may therefore be expressed in either of the forms

OP OP

Each of these expressions is a one-valued function of the

position of P though their values are not necessarily equal except
at points on the orbit.

We may suppose either of these laws to be extended to all

points of the plane of motion and enquire what would be th<

path for any given conditions of projection. These problems will

be considered in turn.

457. The conic being given in its general form referred to any rectangular

Ax* + 2Cxy + By* + 2Dx + 2Ey + O = 0,

the two Hamiltonian expressions for the force to the origin may be put into

rm
VS+3f+W

where a=D*-AG t y= DK-CG, p = E*-HG, and A in the discriminant.

To prove this we notice that the polar line of the origin is Dx + F.y + G = 0, so

that the ratio of the perpendiculars from the centre z, y and from the point P it

V
p
"
Dx + Ey + G

'

If we refer the equation of the conic to the centre as origin, it becomes
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Turning the axes round the origin let this become

where by the theory of invariants A'B'=AB-C* and A' + B'=A+B. Since the

conic is now referred to its principal diameters, we have a~b-= .

.I />'

It immediately follows by substituting in Art. 453 that

(Dx+Ey + G)*'

Since the equation of the conic may be written in the form

(Ax- + 2Cxy + By*) + (Dx +Ey + G)*=(Dx + Ey)*,

the expression just obtained for the force F may be put by a simple substitution

into the second form.

The straight lines ax* + 2yxy+py2=0, when real, pass through the origin and

make Dx + Ey + G= 0. They therefore meet the curve at the points where the polar

line of the origin cuts it, i.e. these straight lines are the tangents drawn from the

centre of force to the conic.

458. In the same way we may express F as a function of the coordinates

x, y in a variety of different forms each of which gives the same magnitude for

the force when the particle lies on the given conic. When these expressions for

the force are generalized and supposed to hold at all points of space, they are not

always one-valued functions of the coordinates. A law which gives several

different values for the force at the same point may be set aside as altogether

improbable.

For example, we might deduce from Hamilton's law an expression for F in

terms of r alone. To do this we find the distance p of any point P on the orbit

from the polar line of the origin in terms of the distance r of P from O. But

there are four points on the conic at the same distance r from the origin and each

of these is, in general, at a different distance from the polar line. The expression

for the central force F as a function of r only will therefore have four values for

each value of r.

459. The First law of force. Supposing the first form of the Hamiltonian

law of force to be extended to all points of the plane, we put F=^, where r is the

distance of any point P from a fixed centre of force 0, and p is the perpendicular

from Pon an arbitrary straight line fixed in space. It is supposed that p is positive

when P and the origin are on the same side of the given straight line.

We shall now prove that, if a particle be projected from any point P in any
direction PT, with any velocity V, the path is a conic having 0, and the given

straight line, for pole and polar.

This follows from the results of Art. 453. It is obvious that we can describe a

conic to satisfy (1) the three conditions that it shall pass through P, touch PT and

have such a radius of curvature that Vz
jp is equal to the normal force at P, (2) the

two conditions that the polar line of shall be the given straight line. We may
also prove that this conic is a real conic. This being so, the conic must be the

path.
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We may however obtain a proof independent of Art. 453 by integrating the

equation of motion. Let the origin be at the centre of force, and the given

straight line be parallel to the axis of or at a distance c, then p = c-rsin0.

We have -
, .,

= ^ -. r, = ,
--

= rr-,
ilt*- h-u- h* (up)

s
h*(cu-RinO)*

To integrate this, put c = sin + cu';

+ u'-
M

*

dff-^ ~h-<W
This is the differential equation of the path of a particle acted on by a central

force F=/tr/c
3

. This path is known to be a conic having its centre at the origin,

Art. M
/. c-u

f*=A'cos2 + 2C'coB0sin0 + B'8mz
..................... (1).

The polar equation of the required orbit is therefore

(cu
- sin 0)

Z= A' cos2 + 2C"cos sin + B' sin2 0,

which when written in Cartesian coordinates becomes

(c-y)*= A'a?+ 2C'xy + B'y*.............................. (2).

Writing this equation in the form /c7
2
=a/3 where a, /3 are the factors of the right-

hand side, it is obvious that the polar line of the origin is the given straight line

When the conic is given in the form (2), the constant h is given by j
= A'B' - C'2 .

To prove this we notice that h represents the angular momentum of both orbits.

W.- have therefore by Art. 326 JiV/M = a'2&'2 , where a', b' are the semi-axes of the

conic (1). We know by the theory of conies that A'B' - C/2=c4
/o

/26'2
, the result

fore follows at once.

When the conic is given in the general form of Art. 457, we find ft = A ( ^ ) .

/i
2

\(,J

Since the central force is not a function of r only, it is not conservative and the

velocity cannot be found without a knowledge of the path. In such cases we use

tin- formula r--hl(OZ), see the figure of Art. 450.

46O. To classify the patJis according to the sign of n, the law of force being

; the force is attractive and the orbit concave to at all points

on the side of the given straight line nearest to the centre of force and the con-

trary at all points on the far side. When a conic cuts the polar line of a point 0,

the part of the curve nearest to is convex ; hence the orbit does not cut the polar
It also follows that the orbit may be an ellipse or hyperbola on the side near

0, but must be a hyperbola on the far side.

he force is repulsive and the orbit convex to on the near

side of the polar line while the contrary holds on the far side. The conic may be

an ellipse or a hyperbola. By drawing a figure we see that the polar line must cut

the conic though, in the case of a hyperbola, the path may be the other branch.

461. Example*. / 1 The conic Ax*+%Cxy + By*+*cy -cf=0 is de-

scribed by a particle under the action of a central force
*'=^j tending to the

origin, where p=c-y is the distance of the particle from the given straight

R. D. 19
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y = c. The conic must have the form given if the polar line of the origin is to be

= c. Prove that

(1) {A(B + l)-C*}h*=nc, (2)

(3) 4PS^+/$Y. W

(5) -C*2

From these equations, when the path is known, we can find the angular momentum
h and the two components of velocity ; conversely we can deduce the path when

the circumstances of projection are given.

These equations follow from the preceding propositions. An independent

proof may be obtained by differentiating the equation of the conic twice and

writing for d2
x/dt

2
, d^yldt

2 their values -fjixjp
3

, -/j,yjp
3

. We thus obtain three

equations which may be transformed into those given above by simple processes.

Ex. 2. Prove that the conic described is an ellipse, parabola or hyperbola

according as /* (2p
-

c) /p
z -p^ is positive, zero or negative, where p is the distance

of the point of projection from the polar line ancl p' the resolved initial velocity.

Ex. 3. If Axz + 2Cxy + By* + 2Dx +2Ey+G = Q is the conic described, show
3

that the periodic time in an ellipse is
T=-j- J7Tg~~/7ir/ij

"

*.n 2

Ex. 4. A particle is acted on by a central force F=H^ tending to the

origin where r is the radius vector and p the distance from a fixed straight line.

Prove that the equation of the path is c/r=sin0+/(0), where cjr=f(d) is the

polar equation of the path when the force tending to the origin is F=/ir
n~2

/c
n

,

both orbits being described with the same angular momentum h.

462. The second law of force. Supposing the second form of the

Hamiltonian law of force to be extended to all

points of the plane of motion, we put

(PL.PM)*'
where PL, PM are the perpendiculars from any

point P on two fixed straight lines OA, OB, drawn

through the centre of force 0; Art. 456.

The form of the path may be obtained by

following either of the methods described in Art.

459. The result is that the path is always a conic touching the given straight

lines OA, OB.

If the force at any point P given by this formula is to be a function of the

position of P only, it should be supposed to keep one sign throughout each of the

triangular spaces formed by the given straight lines OA, OB (supposed to be real),

though that sign may be different in different triangles. In any triangle in which

the sign is negative only the convex portions of the conic can be described, while

the concave portions are alone possible when the sign is positive. The force is

infinite when the particle arrives at either of the straight lines OA, OB and the

path becomes discontinuous.

If we suppose the magnitude alone of the force to be given by the formula, the
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sign being taken at pleasure, arcs of both parts of each conic could be described

by giving F the proper sign.

463. Examples. 7..r. 1. If the trilinear equation of the conic is ap= icy
3

,

prove that h*= - 4vc* cosec2 $ where V = HK*, 6 is the angle at the corner of the

triangle occupied by the central force, and c is the perpendicular from the centre

of force O on the polar line AD. The negative sign shows (what is indeed obvious

from the figure) that the force is repulsive on the side of the polar line nearest to

the centre of force, i.e. n is negative.

2. A particle is projected from the point P with a velocity V and the

tangent GPH intersects the given straight lines OA, OB in G and H. Prove that

the area! equation of the path, referred to the triangle OGH, is

where J=GP, m=HP, A is the area of the triangle, and the radius of curvature p

of the path at P is given by V*lp=FBinGPO. It follows that the conic is

inscribed or escribed according as F is positive or negative, i.e. according as the

force is attractive or repulsive.

464. There are no other laws of force besides

jOP _ OP

'"W'iPL.PU)*'
which, being a one-valued function of the coordinates (except as regards sign), are

such that a conic will be described with uny initial conditions.

To prove this consider two conies intersecting in the four points A, B, C, D,
which it is convenient to take as real. It follows from Hamilton's theorem that

for points on any one conic the force to a given point must be F = nrjp
3

. Hence

if the force is to be one-valued, i.e. the same at the same point of space for all

paths through that point, we must have at each of the four points A t B, C, Z>,

ptjn= i.p'
3
//, where p, p' are the perpendiculars on the two polar lines of 0.

MOW require the following geometrical theorem*. If two conies intersect

in f< .1, B, C, D and the ratios of the perpendiculars from each of these

points on the polar lines of a point O are equal, then either the polar lines are

coincident or two common tangents (real or imaginary) can be drawn from O.

In the former case the common law of force for the two conies is given by the

first form of /', in the latter case by the second form.

* Let the conies be, see Art. i

cue*+ 2-yxy -f /ty
a= (Dx + Ey + 0)

f
,

a'*5 + 2y'xy + /Ty
9= (D'x + E'y + O').

Since Dx + Ey + G=0, D'x + E'y + G'= Q are the polar lines of the origin, we
must have at the points of intersection

ox*+ 2>xy + /9y*= m (a'x
1+ Vy'xy + 0V).

This quadratic equation gives only two values of y/x for the same value of m.

The equation cannot therefore be satisfied at four points unless either a, ft, y are

respectively proportional to a', ft', >', or the four points lie on two straight line*

(say OAI1, OCD) passing through 0. In the former case the two conies have a

pair of common tangents, in the latter the polar line of is common to the two

conies. This common polar line can be constructed by dividing OAlt, OCD har-

monically in E, F and then joining EF.

192
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Singular Points in Central Orbits.

465. Singular Points. It has already been pointed out in

Art. 100 that cases present themselves in our mathematical pro-

cesses in which either the force, the velocity or both become

infinite. Such infinite quantities do not occur in nature and if

we limit ourselves to problems which have a direct application

to natural phenomena these are only matters of curiosity. Never-

theless it is useful to consider them because they call our attention

to peculiarities in the analysis which we might otherwise pass

over. The utility of such a discussion is perhaps shown by the

differences of opinion which exist regarding the subsequent path
of a particle on arriving at a singular point*.

466. Points of infinite Force. Let us suppose that a

particle P, describing an orbit about a centre of force 0, arrives

at a point B where the tangent passes through the centre of force

and therefore coincides with the radius vector. At first sight we

might suppose that the particle would move along the straight

line BO and proceed in a direct line to the centre of force. But

this is not necessarily the case.

Supposing B to be at a finite distance from and the curvature

to be finite, we see from the equations (Art. 306)

tf = F P v==
h

r
<M = h

p~ r'
~
p' dt

~~
r'

that both v and F are infinite at the point B. We shall also

suppose that when the particle passes on the force changes its

direction and reduces the velocity again to a finite quantity.

At the same time the component of the velocity perpendicular
to the radius vector OP, viz. rdO/dt, remains finite however near

the particle approaches B. Since there is no force to destroy this

transverse velocity, the particle must cross the straight line OB
and proceed to describe an arc on the opposite side.

* The singularity of the motion when the particle describes a circle about an

external centre of force is discussed in Frost's Newton, 1854 and 1863. The same

result is independently arrived at by Sylvester in the Phil. Mag. 1866. Other

cases are considered by Asaph Hall in the Messenger of Mathematics, 1874. There

are several papers also in the bulletin de la Societe Mathe"matique de France, such

as Gascheau in vol. x. 1881, and Lecormi in vol. xxii.
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467. To simplify the argument, let us suppose that the

particle describes a circle about a centre of force external to

the circumference. By Art. 321, the circumstances of the motion

are given by
r

where b is the length of each of the tangents OB, OB' drawn from

to the circle.

Describe a second circle having a radius equal to that of the

given circle and touching OB at B on the opposite side. If a

second particle, properly projected along the second circle, arrive

at B simultaneously with the given particle P, but moving in

the opposite direction, both the velocity v and the transverse

velocity h/r of the two particles will be equal and opposite each

to each.

If the velocity of the second particle be reversed, Art. 419, it

will retrace its former path in a reverse order and this must be

also the subsequent path of the particle P.

The particle will therefore describe in succession a series of

arcs of equal circles. The points of discontinuity at which the

particle changes from one circle to the next lie on a circle whose

centre is and radius OB = 6, and the successive arcs are alter-

nately concave and convex to the centre of force. The particle

will thus continually move round the centre of force in tfie same

in an undulating orbit, but the curve will not be re-

entering after one circuit unless the angle BO& is a submultiple
of four right angles.

The same arguments will apply to other orbits. When a

conic is described about an external centre of force as ex-

plained in Art. 462, the particle by a proper projection can be

made to describe either of the arcs contained between the

tangents drawn from 0. On arriving at the point of contact B
t

ill cross the tangent and describe an arc of a conic equal to

the undeaoribed arc of the original conic.

408. The particle arrives at tfce centre of force. When the particle P
arrives at the centre of force in a finite time, the determination of the subsequent

path presents some other peculiarities.

Taking first the Newtonian ease in which the particle describes a circle about a

centre of force O on its circumference, we notice that the transverse velocity hfr (as

well as the velocity r) becomes infinite at 0. To understand how the particle can
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have an infinite velocity in a direction perpendicular to what is ultimately a

tangent to the path, we observe that, since 2ap = r\ the transverse velocity /i/r is

infinitely less than the tangential velocity h/p.

When the particle has passed through the origin, the central force, changing
its direction, reduces the velocity again to a finite quantity. Meantime the

transverse velocity carries the particle across the tangent to the circle. By the

same reasoning as before, the subsequent path is an equal circle which touches the

original circle at the centre of force. On arriving a second time at the centre of

force, the particle returns to the original circle, and so on continually.

469. One peculiarity of this case is that the radius vector of the particle

while describing the second circle moves round the centre of force in the opposite

direction to that in the first circle. Let P, P' be two positions of the particle,

equidistant from the centre of force, just before and just after passing through

that point. The transverse velocity being unaltered the moments of the velocity

at P and P1
taken in the same direction round are equal and opposite. Since

this moment is r^de/df, it follows that at the point of discontinuity h changes
its sign.

470. When the particle moves in an equiangular spiral about a centre of

force whose law is the inverse cube, it describes an infinite number of continually

decreasing circuits and arrives at the centre of force at the end of a finite time,

Art. 319. The subsequent path is another equiangular spiral, Art. 357, having
the same angle. To determine its position we consider the conditions of motion

at the point of junction.

Let us construct a second equiangular spiral obtained from the first by

producing each radius vector PO backwards through the origin to an equal
distance OP'. If two particles P, P' describe these spirals so as to arrive simul-

taneously at the centre of force 0, the particles are always in the same straight

line with 0, and at equal distances from it. Their radial and transverse velocities

are also always equal and opposite each to each. If the velocity of P' be reversed,

it will retrace its former path in a reverse order, and this must therefore be the

subsequent path of P.

On passing the centre of force the particle will recede from the origin and
describe the spiral above constructed. We notice also that the radius vector of

the particle moves round the centre of force in the opposite direction to that in

the first spiral.

471. Limiting Problems. We may sometimes simplify the discussion of

some singularities by replacing the dynamical problem by another more general

one of which the given problem is a limiting case. But the use of the method

requires some discrimination. For example the motion of a particle attracted by
a centre of force at a point whose law of force is the inverse cube, may in some
cases be regarded as a limit of the motion when the particle is constrained to

move in a smooth fixed plane and is attracted by an equal centre of force situated

at a point C outside the plane, where CO is perpendicular to the plane and is equal

to some small quantity c. The method requires that the limiting motion should

be the same whether we put the radius vector r=0 first and then c = 0, or c = first

and then r=0. We know by the principles of the differential calculus that the

order in which the variables r and c assume their limiting values is not always a

matter of indifference.
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The component of force in the direction of the radius vector PO is /*r/(r
a + c1)

f

when the centre of force is at (7, and is ^/r* when the centre is at 0. As long as

the particle is at a finite distance from the origin, these components are sub-

stantially the same, but when the particle is in the immediate neighbourhood of 0,

the former is /ttr/c
4 and therefore zero when the particle passes through O, while

the latter is infinite.

In the former case, though the orbit at a distance from is very nearly an

equiangular spiral, it becomes elliptical in the neighbourhood of 0. The force is

not sufficient to draw the particle into the centre ; the path has a pericentre and

the particle retires again to an infinite distance. See also Art. 322.

472. Examples. Ex. 1. A particle describes one branch of the spiral rd= a

under the action of a centre of force in the origin (Art. 358). Show that after

passing through the centre of force it will describe another spiral of the same

kind, obtained from the first by producing each radius vector backwards through

the origin to an equal distance.

Since the tangent to the curve is ultimately perpendicular to the radius vector,

the two branches of the spiral may have a common tangent, and it might therefore

be supposed that the particle would describe the second branch. But this argu-

ment requires that the particle should not pass through the origin, so that the

radial velocity dr/dt (which is known to be constant) has its direction altered with-

out any change in the direction of the force.

'2. A particle describes an epicycloid with the centre of force in the centre

of the fixed circle (Art. 322). Supposing the force to become repulsive when the

particle enters that circle, show that the path on passing the cusp is a hypocycloid.

Kepler's Problem.

473. A particle describes an ellipse about a centre of for
one focus, it is required to express in series the two anomalies and

is vector in terms of the time.

\ve require only the first few terms of the series it i>

convenient to start from the equations

(1),

wh-re v is the true anomaly. Kliminating r, we have

= (1
-

Ja* + &c.) (1
- 2e cos v + 3*1 cos* v - &c.)

Remembering that v= 0-ot, where a is the longitude of the apse
nearest to the centre of force, we have

nt + = 0- 2c sin (0-o) + fe*sin2 (0- a) + &c (2),

where ;i
f
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We notice that when the planet makes a complete revolution,

6 increases by 2?r and that the corresponding increment of t is

2?r/?i. It follows immediately that n represents the mean angular

velocity, the mean being taken with regard to the time; see

Art. 341.

The equation (2) may be extended to higher powers of e, and

therefore when e is small it may be used to determine the time

of describing any angle 6.

474. To find 6 in terms of t, we reverse the series. Writing
it in the form

8 = nt + e + 2e sin (d
-

a)
-

f e2 sin 2 (0
-

a),

we have as a first approximation

6 = nt + e
;

a second approximation gives

= nt + e + 2e sin (nt + e a).

Writing VQ
= nt + e a, a third approximation gives

a. = v + 2e sin (v -f 2e sin v ) f e
2 sin 2v

;

/. 6 = nt + e + 2e sin (nt + e - a) + f e2 sin 2 (nt + e - a). . .(3),

and so on, the labour of effecting the successive approximations

increasing at each step. As the eccentricity of the earth's orbit

is about l/60th it is obvious however that the terms become

rapidly evanescent.

475. For the sake of clearness we recapitulate the meaning
of the letters in the important equation we have just investigated;

6 is the true longitude of the planet measured from any axis of

x in the plane of the orbit
;
a is the longitude of the apse nearest

the centre of force or origin ;
n is the mean angular velocity, the

mean being taken with regard to time for one complete revolution;

e is a constant whose magnitude depends on the instant from

which the time t is measured.

To define the epoch e. Let a particle P move round the

centre of force in such a manner that its longitude is given by
the equation = nt-)-. It follows that this planet moves with

a uniform angular velocity n and has therefore the same periodic

time as the true planet P. When the radius vector of the particle

P passes through an apse # a and therefore nt + e a. is an
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integral multiple of TT. It immediately follows from (2) that

0=nt + . Hence the radii vectores of the two planets coincide

when the true planet passes through either apse. The definition

of P may be shortly summed up thus.

Let an imaginary planet move round the centre of force with

rm angular velocity in the same period as the true planet
1 let their radii vectores coincide at one apse and therefore at the

other. This planet is called the Dynamical Mean Planet. Its

longitude at the time 2 = is the constant e and is called the epoch.

476. To express the mean anomaly and radius vector in terms

of the time.

Since both the mean and true planets cross the nearer apse at

the time given by nt + e = a, the mean anomaly may be repre-

sented by m = nt + e. If u be the eccentric anomaly we have by
Art. 342,

u = m + e sin u.

Proceeding as before we have for the three first approximations,

u = m, u = m + e sin m,

u = 7?i -f e sin (m -f e sin m)
= m + e sin m + %e? sin 2m (4).

Again, as in Art. 343,

r = a exa ae cos u

= a aecos(m + e sin m)

a (1 e cos 7/1 + ^e
a
(l cos2w)J (5).

The series for the longitude and radius vector are given here only to the second

power of the eccentricity. Laplace in the Mtcanique CfUstc (page 207) and

Delaunay in his Tlo'ori,' <!< I,, /,? (vol. i. pages 19 and 55) give the series up to

the sixth power. Stone has continued the expansion up to the seventh power in

the A$tronomical Noticet, 1896 (vol. LVI. page 110). Glaisher has given the

expansion of the eccentric anomaly up to the eighth power in the Attronon<i.,tl

S 1877 (vol. xxxvn. page 445).

477. When thf c<-, it very nearly -./H/I/ /,> unity, as in the CAM of

some comets, the formuln giving the relations between t and v must be modified.

Starting as before (Art. 473) from the equations

we put the perihelion distance a (1
-

#)
= p.

(l+)f dt

(1 + eoos*)*



298 KEPLER'S PROBLEM. [CHAP. vi.

Let (l-e)/(l + )=/and put tanr=x for the sake of brevity;

[
< V

When v is given this formula determines the time t measured from perihelion.

If / is small the term independent of / is the one requiring the most arithmetical

calculation and this can be abbreviated by using the tables constructed for that

purpose ; see Art. 349. Conversely when t is given and v is required the same

tables give a first approximate value of x. Representing this by tan u, it is

usual to expand the correction v - w in terms of u in a series ascending in powers

of /. For these formulas we refer the reader to Watson's Astronomy and Gauss,

Theoria, &c.

478. When the eccentric anomaly is given, the true and mean anomalies and

the radius vector are expressed by the equations

m= u-esinw, tan= . / . t&n" (1),

r=a-ex= a(l-ecosu) .............................. (2).

When any one of the other quantities is taken as the independent variable, the

corresponding equations can be deduced from these in the form of series. Two

methods are used to find the general term of these series. First we may have

recourse to Lagrange's theorem, viz., when

where Li = l . 2 . 3...i, and the S implies summation from i= l to <x> . By the

second method the general term is expressed by a definite integral which is usually

a Bessel's function.

479. Lagrange's theorem. To express the eccentric anomaly u and the

radius vector r in terms of the time.

Since u=m + e sin u, we have by Lagrange's theorem

The expansion of (sin m)' in cosines of multiple angles when i is even and in sines

when i is odd is given in books on trigonometry ; (see Hobson's Trigonometry, Art.

52). The (i
-
l)th differential is always a series of sines and is easily seen to be

i - 2)m +*-(i -
4)<-isin(i

-
4)ro

- Ac.

In the same way, expanding cos u by Lagrange's theorem, i.e. writing f(y) = cos y,

we find

- 1 = - e cos u = - e cos m + S
jr-j^i (

sm w)
i+1

where as before 2 implies summation from t= l to GO .

48O. Bessel's functions. We shall now briefly examine the second method

by which we express the general term in a definite integral. We know by Fourier's

theorem that we can expand any function
<f> (m) in a series of the form

(m) = A + A 1
cos m+ ...+A t cosim+ ...

+ .BJ sin m+...+iBin im+ ...,
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which holds for all values of m from - T to + T. If also (m) is a periodic

function having the period 2*-, the expansion will hold for all values of m. If

(m) does not change sign with m we may omit the second line of the expansion,
while if it does change sign with m, we omit the first line.

To find A i we use Fourier's rule; multiply both sides by cos t'm and integrate

from m = - T to + T. Remembering that

jcos I'M cos I'M dm = 0, Jcos im sin I'M dm= 0,

Jcos
2 im dm= Jsin

2
t'm dm= TT,

we find

J0 (M) cos im dm= irA
i , fo (m) dm = 2ir^ .

Similarly multiplying by sin t'm and integrating between the same limits, we find

J0 (m) sin t'm dm=T#
4 .

481. To expand u-m esinu in a series of sines of multiples of m. We put
j< - M = 17^ sin im ;

/. rB t
=

J(u
-
?) sin I'M dm,

the limits being m= - T to T. Integrating by parts,

ri#t= -
(u

-
m) cos im + Jcos I'M (du

- dm).

The integrated part is zero, for n and m are equal when u = IT. We thus have

in 7>\ = jcos I'M dt< - Jcos im dm.

The second integral is zero
; substituting for M its value in terms of u,

Tt-B,= Jcos i (u
- e sin

?<)
du.

This definite integral when taken between the limits and T is written

We have
u =m +Z{ sin im, iB

l
= 2Ji (ie).

482. The series thus obtained is convergent, for

[du . du . [d?u
l-j- dsmiM= -smiM- I .

-

-^

J dm dm J dm?

The integrated part vanishes at both the limits m= T. Also

d% - e sin n
..._-, ___

and since <1, it is clear that d8
i//dm

2 has a numerical maximum value; let this

be k. Since sin t'm <1, it follows that ri'Z?, is numerically <2A-T. The series is

therefore at least as convergent as 11
/<"-'.

483. To compare the two expansions of u-m. In the Lagrangian series the

terms are collected according to the powers of e, the coefficient of e 1

being a aeries

of the sines of multiple angles. In the series with Beasel's functions the terms

are arranged according to the multiple angles, the coefficient of sin t'm being a

series of powers of e.

The series for u-m is really a double series containing both trigonometrical

terms of the form sin t'm and also powers of c. If the terms are collected and

arranged according to the multiple angles, it follows from what precedes, that each

coefficient B< is a convergent series, and that the series of coefficients />,, Ac.

also form a convergent series, provided the eccentricity e is less than unity.

But if the series is arranged according to the powers of t, the positive and

negative terms are added together in a different way. It may then be that the

- of coefficients of e, e*, Ac. are only made convergent by more limited values

of e. The condition of oonvergency is given in Art. 488.
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484. The expression for B t may be written

iriBi= j
cos i ii .

{
1 - i i

ae2 sin2 + &c.
}
du + jsin iu .

{
i e sin u - &c. } du.

If we expand sin2 u, sin4 H, Ac. in cosines of multiple angles and remember that

jcostucost'u<Zu
= 0, we see that every term in the first integral will be zero in

which the power of e is less than /. A similar remark applies to the second

integral. Hence the lowest power of e which accompanies the term sin im is e
{
.

486. To express r/a = l - e cos u in a series of cosines of multiples of m, we put

-eco8u= A + S^,cos im;

.: irA
i

-
efcos u cos imdmt

where the limits of integration are m= -TT to IT. Integrating by parts to change

dm into du, we have

TriA
i
= - e cos u sin im - ejsin im sin udu.

The integrated part vanishes between the limits. Writing m = u-esinu, the

integral becomes

n-iAi
-
ejsin i(u-e sin u) sin udu

= $e Jcos {(i + 1) u-iesmu} du-^ejcoa {(i-l)u-ie siuu} du;

.-. iA
i
= e

{ Ji-n (ie)
-J^ (ie) }

.

Similarly 2irA -
ejcos u dm= -

ejcos M . (1
- e cos u) du.

Integrating between limits u= -IT to TT, we find 4 =e2
:

486. That this series is convergent may be proved in the same way as before.

We have
fd cos M , fd2 cos u

i
= - e \

- d cos im= e I r-^ cos im dm,
J dm J dm9

by integrating by parts. Since u = m + e sin u, we find by differentiation

f^
M =

,,

g ~ C
. This has obviously a maximum value, say k. Then since

dm* (1-ecosw)
2

cos tin <1, vPAi is numerically less than 2-rrke, and the series is at least as con-

vergent as Sl/t
2

.

487. Examples. Ex. 1. Prove cos /cu = 2.4(008 im, sin *M=S,Bi sin im,

where iA i=K{Ji^K (ie)-Ji+K (ie)}, iBi=K {Ji_K (ie)+Ji+K (ie)} and K is not equal to

unity, and the summations extend from i= 1 to oo . Also J_n (#)= (- l)
nJn (x).

Since J_n ( -x)=Jn (x), these series may be written

1 . . cos im 1 . _, , . . . sin im
cos KU= Ui-* (ie) : ,

- sin KU= St/f.^ (ie) . ,

K IK i

where 2 implies summation from i = - oo to +00, and the term J^K (ie)ji, when

t = 0, is - \e or according as K is equal or unequal to unity (Art. 485).

Since the Cartesian coordinates, referred to the centre of the ellipse, are

=acosM, 7/
= 6smM, we deduce the expansions of these in terms of the mean

anomaly by putting *= 1.

Ex. 2. Prove that ajr-l + 22Jf (ie) cos im, where the summation extends from

i= 1 to oo .

This follows from a/r=du/dm; see Arts. 343, 481.
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3. Prove that v =m + 2C4 am im, where

C = ) /'cos i (ii
- e sin n) ^

iri J 1-eCOBU

(+*
Proceeding as before we find iriC

4
= I cos /m (dv-dm); substituting for rfr/du,

the result follows. Also by integrating again by parts, we can prove that this

series is at least as convergent as 21/i
2

. This integral is given by Poisson in the

Connaisgance de Temps, 1825, 1836. See also Laplace, vol. v. and Lefort, Liouville's

Journal, 1846. See also Art. 343.

Ex. 4. Prove the expansions

(v
-
v) = \ sin u + ^ X

2 sin 2u + & X
3 sin 3u+ . . .

where x=. [Laplace.]

In itLn^v = fjit&n^u, where p?= (l + e)j(l-e), substitute the exponential values of

the tangents, solve for ft*"*) ^-1 and take logarithms ; the results follow easily.

( X)
4

Ex. 5. Show that m =v + 2S r-^- {
1 + i\/(l

- c2)} sin iv where S implies sum-

mation from f= 1 to oo .

We have from the geometrical meaning of u, r sin v b sin w (Art. 342),

Expand, substitute in m = u-esinu, remembering the theorem in Ex. 3, the result

follows. This is Tisserand's proof of Laplace's theorem, Mec. Ctltstt, page 223.

488. Convergency of tlie Mries for r and 6. Laplace was the first to prove
that the expansions of the radius vector and true anomaly in terms of the time

and in powers of the eccentricity are not convergent for all values of the eccen-

tricity less than unity (see Arts. 474, 476). He showed by a difficult and long

process that the condition necessary for the convergence of both series is that the

eccentricity should be less than -66195. Mtc. Ctleste, Tome v. Supplement, p. 516.

This important result was afterwards confirmed by Cauchy, Kxercbti d'Analyse.

Ac. An account is also given by Moigno in his Differential Cnh-ulm. The whole

argument was put on a better foundation by Itouchu in a memoir on Lagrange's

series in the Journal Polyt<-chin<iu,\ Tome xxu. The process was afterwards

further simplified by Hennite in his Co" icultt det Science*, Paris 1886.

In these investigations the test of convergency requires the use of the complex
variable. The latter part of the method of llouche* may be found in Tisserand,

Mfc. Celeste, Art. 100, and U also given here.

480. The theorem arrived at may be briefly stated. Having given th.

equation * =m + x0(z) we have (1) to distinguish which root we expand in powers
of x, (2) to determine the test of convergency. It is shown that if a contour

exist enclosing the complex point z = ro, such that at every point of the boundary the
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modulus of 3-1S is less than unity, the given equation has but one root within
Z "" 7/1

the area and the Lagrangian expansion for that root is convergent *.

To apply this theorem to Kepler's problem we put <f> (z)
= sin z and let x repre-

sent the eccentricity of the ellipse, Art. 478.

We measure a real length OA = m from an assumed origin 0, and with A for

centre describe a circle with an arbitrary radius r. Representing the complex line

OP by z, the Lagrangian series will be convergent if r can be so chosen that the

modulus of
X

- -'- is less than unity for all positions of P on the circle. Since
z-m

(mod)
2 of ( + rji)

= $ ( + 771) .
(
-

771),

where e is the base of Napier's logarithms, we have

, x sin z (x\
z sin (m+re

ei
)
sin (m + re~ 6i

)

(mod)
2 of- =1 -

^-. j:
-

z-m \rj e
~*

~
2 (

"
)

^ C S ^2n 8in ^ ~ C 8
(
2m + 2 ' OS ^ I

*
If f(x) be a continuous one-valued function over the area of a circular contour

whose centre is x=a, then Cauchy's theorem asserts that f (x) can be expanded by

Taylor's theorem in a convergent series of powers of x- a for all points within the

contour
; (see Forsyth's Theory of Functions, Art. 26).

When z =m + x<j> (z), the Lagrangian expansion of z, or
\f/ (z), in powers of x is

a transformation, term for term, of Taylor's, and we may use Cauchy's theorem,

provided z, or ^ (2), is one-valued.

If z have two values for the same value of x, the equation F (z)
= z - m -

x<f> (z)
=

(regarded as an equation to find z when x is given) has two roots. To determine

whether this is so, we use another theorem of Cauchy's (see Burnside and Panton,

Theory of Equations).

We measure OA =m from the assumed origin and with A for centre describe

a circle of radius r. Let a point P describe this circle once, then by Cauchy's
theorem if log F (z) is increased by 2mri, the equation F (z) has n roots within the

contour. Hermite writes

log F (z)
= log (z

- m) + log ( 1 - *^ff\ t

\ z-m )

(1) The equation z~m= Q has but one root and that root lies within the

contour, hence as P moves round, log (z
- m) is increased by 2-n-i.

(2) If the modulus of M= -^ is less than unity at all points of the circle,

the value of log(l-w), (being the same on departing from and arriving again at

any point of the contour) increases by zero when P moves round the contour.

It follows that log F(z) increases by 2-rri when P makes one circuit, that is the

equation z =m + x<j>(z) has but one root within the contour if the modulus of
z m

is less than unity at all points on the circumference.
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Now, putting e
r *in6+e~ rain0=v + *, we see that the first term of this ex-

pression continually increases from r = l, or = to v= oo, and is therefore

greatest when 6 = ^ir. The least value of the second term is zero. The modulus

is therefore less than
^
-

(e
r+ e~ r

).
The Lagrangian series is therefore convergent

for all values of the eccentricity x less than 2r/(e
r+e~ r

).

To find the maximum value of this function of r, we equate its differential

coefficient to zero. This gives

K=er
(r-l)-<r

r
(r+l)=0.

Since dVJdr is positive for all values of r this equation has hut one positive

root, and this root lies between 1 and 2. Using the value of er given by the

equation V=Q, we find that the maximum value of the eccentricity is

which reduces to 66.



CHAPTER VII.

MOTION IN THREE DIMENSIONS.

The four elementary resolutions and moving axes.

490. The Cartesian equations. The equations of motion

of a particle in three dimensions may be written in a variety of

forms all of which are much used.

The Cartesian forms of these equations are

where x, y, z are the coordinates of the particle and X, Yt
Z the

components of the accelerating forces on the particle. These

equations are commonly used with rectangular axes, but it is

obvious that they hold for oblique axes also, provided X, Y, Z are

obtained by oblique resolution.

491. The Cylindrical equations. From these we may
deduce the cylindrical or semi-polar forms of the equations. Let

the coordinates of the particle P be p, <, z, where p, <j>
are the

polar coordinates in the plane of xy of the projection N of the

particle P on that plane, and z = PN. By referring to Art. 35,

we see that the first two of the equations (A) change by resolu-

tion into the first two of the following equations (B), while the

third remains unaltered. We have

V 1 d d<>\ d?z

where P, Q are the components of the accelerating forces respec-

tively along and perpendicular to the radius vector p.
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492. Principle of angular momentum. Since the

moments of the components P and Z about the axis of z are

zero, the moment of the whole acceleration about the axis of c i-

equal to Qp. In the same way the moment of the velocity about

Oz is equal to the moment of its component perpendicular to

the plane POz, and this is p*d<f>ldt. Introducing the mass m of

the particle as a factor, the second of the equations (B) may be

written in the form

d /moment of \

dt vmomentunv

/moment of \

V forces /
'

The moments may be taken about any straight line which is fixed

in space, such a line being here represented by the axis of z. The
moment of the momentum is also called the angular momentum
ut the particle (Arts. 79, 260).

When the forces have no moment about a fixed straight line the

///'// momentum about that straight line is constant throughout
the motion.

493. The polar equations. We may immediately deduce

from the semi-jmlnr form (B), the polar
twns (C). Let r, 6, <f>

be the polar co-

ordinates of P, where r - OP, 6 is the

angle OP makes with the axis Oz, and
</>

the angle the plane POz makes with the

plane xOz.

Si net- or = ,- js the radius vector cor-

resjM.nding to the coordinates OX = p, XP =
z, we see by Art. 35

that the accelerations

and g are equal to ^-rff)'<n- (it- \dt )

N

tne Direction in whirh

H. nee the whole acceleration of P is the resultant of

d-r /rf#\^ dP
~ r

\dt

measured
;

(2)
-

^- (^TT) perpendicular to OP, in the plane zOP, taken

positively in the direction in which is measured;
K i. I 20
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(3) pf-^J
in the direction of the perpendicular drawn from

P on Oz, Le. parallel to NO
;

W -7- (p
z

~^f) perpendicular to the plane zOP in the direc-

tion in which
<f>

increases.

If R, S, T are the components of the acceleration of the

particle respectively in the directions of (1) the radius vector OP,

(2) the perpendicular to OP in the plane of zOP
y
and (3) the per-

pendicular to the plane zOP, taken positively when they act in

the directions in which r, 6, cf>
are respectively increasing, we have

We notice that p = r sin 0,

494. Ex. If v be the velocity, show that the radial acceleration is

,
d"r 1 |/<JrV ,)P=3? +

?{(*)- "7
'

495. Reducing a plane to rest. Referring to the semi-

polar equations (B), we notice that if we transfer the term

p (dcfr/dt)* to the right-hand side of the first equation and include

it among the impressed accelerating forces, the first and third

equations become the same as the Cartesian equations of motion

of a particle moving in a fixed plane zOP (Art. 31), while the

second equation determines the motion perpendicular to that

plane. We may therefore replace the first and third resolutions

by any of the other forms which have been proved to be equivalent

to them. Art. 38.

For example, if we replace these two resolutions by their

polar forms (Art. 35) we obtain at once the equations (C).

The process of regarding p (dfyjdt)- as an impressed accelerating

force acting at P and tending from the axis of z is sometimes

called reducing the plane zOP to rest. See Arts. 197, 257.

I
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496. The intrinsic equations. To find the intrinsic equa-

tions of motion, due to the tangential and normal resolutions.

Let P, P be the positions of the particle at the times t, t-\-dt:

v, v + dv the velocities in those positions, d^r the angle between

the tangents.

In the time dt, the component of velocity along the tangent

at P has increased from v to (v + dv) cos
d-^r. Writing unity for

cos cfyr, the acceleration along the tangent, i.e. the rate of increase

of the velocity, is dv/dt.

The component of velocity along the radius of curvature at P
has increased from zero to (v + dv) sin d-^r, which in the limit is

i-fZx/r.
The acceleration along the radius of curvature is therefore

vd^/dt, or which is the same thing v*/p.

The osculating plane by definition contains two consecutive

tangents. The component of velocity perpendicular to that plane
ro and remains zero. The acceleration along the perpendicular

to the osculating plane, i.e. the binormal, is therefore zero.

If F and G are the component accelerations measured posi-

tively in the directions of the arc s, the radius of curvature p
and H the component perpendicular to the osculating plane, the

equations of motion are

407. Show that the solution of the equation* of motion of a particle in polar
coordinates can be reduced to integration* when the work function hat the form

where /, (r), ft (6) and /8 (0) are arbitrary function*.

The third of the equations (C) gives, with this form of 17, the mass being unity,

(1).

The second of the equations (C) gives

Substituting for <ty/<2<, we obtain

-asb+/'w+l'"

2D 2
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The equation of vis viva is

After substituting from (1) and (2) this becomes

These are the first integrals of the equations of motion. Since the variables

are separable in all the equations, they can be reduced to integrations. Substitut-

ing for dt from (4) in (2), that equation gives 6 in terms of r. Substituting again

in (1), we find $ in terms of r. Lastly (4) determines t in terms of r.

498. Moving axes. To find the equations of motion of a

particle referred to rectangular axes which move about the origin

in an arbitrary manner.

Let us suppose that the moving axes Ox, Oy, Oz are turning
round some instantaneous axis 01
with an angular velocity which we

may call 6. Let 6lt 2 , 3 be the

components of 6 about the instant-

aneous positions of Ox, Oy, Oz. Then
in the figure 6l represents the rate at

which any point in the circular arc

yOz is moving along that arc, 0,2 is

the rate at which any point of the

circular arc zOx is moving along the arc, and so on.

Let us represent by the symbol V any directed quantity or

vector such as a force, a velocity, or an acceleration. Let Vx ,
V

yt

Vz be its components with regard to the moving axes.

Let Of, Or}, Of be three rectangular axes fixed in space and

let Vlt V>2 ,
V3 be the components of the same vector along these

axes. Let a, /3, y be the angles the axis Of makes with Ox, Oy,
Oz. Then

V3
= Vx cos a + Vy cos /3 + Vz cos 7,

dVx dVy dV2

Let the arbitrary axis of f coincide with Oz at the time t, i.e. let

the moving axis be passing through the fixed axis. Then a = JTT,



ART. 500.] MOVING AXES. 309

=
-JTT, 7 = 0. Hence

,_ _ v
dt

"
dt

~
x dt~ y

~dt
'

v da/dt is the angular rate at which the axis Ox is separating
from a fixed line Of momentarily coincident with Oz, hence

doi dt = 2 . Similarly dj3/dt
= -

6^. Substituting

Similarly = * - Vy 9, + V.0t ,

dV, dVy
*-""*" + V*

When the moving axes momentarily coincide with the fixed

axes, the components of the vector V are equal, each to each,

i.e. Vx -Vlt Fj,= F3 , VZ =V3 . As the moving axes pass on,

this equality ceases to exist. The rates of increase of the

components relatively to the moving axes are dVx/dt, dVy/dt,

dVz/dt; while the rates of increase relative to the fixed axes

are dVJdt, dVJdt, dV3/dt. The relations which exist between

these rates of increase are given by the equations just investigated.

499. If the vector V is the radius vector of a moving point
J'. the components VX) Vv ,

Vz are the Cartesian coordinates of P,
and the rates of increase are the component velocities. If the

tor V is the velocity of P, the rates of increase are the com-

ponent accelerations.

Let then x, y, z be the coordinates of a point P ; u, v, w the

components of its velocity in space ; X, F, Z the components of

its accelerations. Th < 1 1

AGO. If the origin of coordinate* is also in motion these equations require

COM slight modification. Let j>, g, r be the resolved parts of the Telocity of the

origin in the directions of the axes. In order that u, P, tc may represent the
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resolved velocities of the particle P in space (i.e. referred to an origin fixed in

space), we must add p, q, r respectively to the expressions given for u, v, w in Art.

499. These additions having been made, w, v, w represent the component space

velocities of P, and the expressions for the space accelerations A', Y, Z are the same

as those given above. See Art. 227.

The theory of moving axes is more fully given in the author's treatise on

Rigid Dynamics. The demonstration here given of the fundamental theorem is

founded on a method used by Prof. Slesser in the Quarterly Journal, 1858.

Another simple proof is given in the chapter on moving axes at the beginning of

vol. n. of the treatise just referred to.

5O1. Moving field of force. When the field of force is fixed relatively to

axes moving about a fixed origin we may obtain the equation corresponding to that

of vis viva.

If T be the semi vis viva, we know that dTjdt is equal to the sum of the virtual

moments of the forces divided by dt. Hence, the mass being unity,

HT
?fat

If A lt A%, A s are the angular momenta about the axes (Art. 492),

A^yw-zv, A%=zu-xiv, A s =xv-yu,

and, taking moments about the axes,

The equation of vis viva therefore becomes

d
-e

dA *
e
dA*

e
dAs = dU

where U is a function of the coordinates x, y, z only. If lf 2 , 3 are constant,

this, when integrated, reduces to the equation of Art. 256.

5O2. Ex. 1. Show how to deduce the polar forms (C), Art. 493, from the

equations for moving axes.

Let the moving axes be represented by 0, Orj, Of. Let the axis of move so

as always to coincide with the radius vector OP ; let Or) be always perpendicular to

the plane zOP. The angular velocity ddjdt of the radius vector may therefore be

represented by 2
= d0/cfa about 0-rj. The plane zOP has an angular velocity d^jdt

about Oz, and this may be resolved into
l
= cos6d<f>ldt and 3

= sm0d0/d. Also

the coordinates of P are =
r, 77

= 0, f=0.

It immediately follows from the equations of moving axes that u=drfdt, v = 63r,

w= -
2
r. Substituting these in the expressions for X, Y, Z we obtain the com-

ponents of acceleration already written at length in Art. 493.

Ex. 2. If (a^yj), (a^Ta)' (^/VXs) are ^e direction cosines of a system of

orthogonal axes moving about the origin, prove that

Q
da* a +

d
J*l a ^1

where 3
is positive when the rotation is from the first axis to the second.

To prove this we notice that 3 measures the rate at which the axis of y is

separating from the position of the axis of x at the time t. Hence - d3dt is the

cosine of the angle the new axis of y makes with the old axis of x.
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:5. A particle is describing an orbit about a centre of force which varies

as any function of the distance, and is acted on by a disturbing force which is

always perpendicular to the plane of the instantaneous orbit and is inversely pro-

portional to the distance of the particle from the centre of force. Prove that the

plane of the instantaneous orbit revolves uniformly round its instantaneous axis.

[Math. Tripos, I860.]

Lagrange's Equati< >

503. Lagrange has given a general theorem by which we can

form the equations of motion of a particle, or of a system of

particles, in any kind of coordinates*.

The expression "coordinate" is here used in a generalized
sense. Any quantities are called the coordinates of a particle,

or of a system of particles, which determine the position of that

particle or system in space.

In using Lagrange's equations, it will be found convenient

to represent by some special symbols, such as accents, all total

differential coefficients with regard to the time; thus x', x"

represent respectively dx/dt and

504. Lemma. Let L be a function of any variables x, y, &c.,

their velocities x'
', ?/', <c., and the time t. If we express x, y,

as functions of some independent variables 6, <f>,
dec. and the tune

t,say

*=/(*, 0,<M'-)> y = F(t,6,<l> t &c.), z = c....... (1),

then will

ddL dL_/d^dL dL\dx (d dL dL\d
dtdf d6~\dtdx'~ dx)dd+\dtd,j 3y)d9

+

Representing partial differential coefficients by suffixes, we

have by differentiating (1),

aJ =ft+feO'+f*4>' + &c................... (2).

Since 6 enters into the expression L through both x, yt
&c. and

th-ir velocities a?', y' t &c. while & enters only through a?', y', &c.,

' Lagrangian equations are of the greatest importance in the higher

dynamics and are usually studied as a part of Rigid Dynamict. We give here only

such theorems as may be of use in the rest of this treatise. The application of

the method to impulses, to the oases in which the geometrical equations contain

the differential coefficients of the coordinates, the use of indeterminate multipliers,

the Hamiltonian function, Ac., are regarded as a part of the higher dynamics.



312 LAGRANGE'S EQUATIONS. [CHAP. vn.

we have the partial differential coefficients

dL dl dx dLdx'

dL dL dx'

where in each case the &c. represents the corresponding terms for

y, z, &c.
ft T (t **

By differentiating (2) we see that ^ =fe
=

~^.
Hence

d dL _ dL _ id_
dJL

__
dL\ dx

dtdd'~
'

dO~'(didrf'~~dx)d6
+

dL

By differentiatingfe totally with regard to t, we have

/+/.#' + &c...................... (6).

The right-hand side of this equation is seen by differentiating (2)

dx'
to be equal to -^ . It therefore follows that all the terms in the

second line of (5) vanish. The lemma has therefore been proved.

505. By using this lemma we may deduce Lagrange's equations

from the Cartesian equations of motion. For the sake of generality,

let there be any number of particles, of any masses mn m2 , &c.,

and let their coordinates be (asl ,ylt zl ), (x2,y2 ,z2\ &c. Let T be

the semi vis viva of the system, then

2r=2m<X2 +
2/

/2 + /2
) .................. (7).

Let U be the work function of the impressed forces, then U is a

function of the coordinates only. Let Rx ,
Ry> Rz be the com-

ponents of any forces of constraint which act on the typical

particle m. We have as many Cartesian equations of motion of

the form
dU D dU _ dU D"* --&

= **' my ~W=
y '
^

~dz
=R

as there are particles.

The particles may be free or connected together, or constrained

by curves and surfaces, but after using all the given geometrical

relations, the position of the system may be made to depend on

some independent auxiliary quantities or coordinates. Let these
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be 6, <f>, &c.; then writing L=T+ U, 'we have for the particle m,

_ , _ K
dtM~d*-dt m '

dx~

with similar forms for y and z. Hence using the lemma,

d dL dL / dx dy p dz\~^ Rx + Ry + Rz .........(8) '

where 2 implies summation for all the particles.

The right-hand side of this equation (after multiplication

by W) is the virtual moment of the forces of constraint for a

geometrical displacement BO. This by the principle of virtual

work is known to be zero.

Since the variations of the coordinates or, y, &c. due to the displacement 50 are

deduced from the partial differential coefficients dxjdd, dy/de, &c., t not varying,

the displacement given to the system is one consistent with the geometrical relations

as they exist at the instant of time t.

Taking the various kinds of forces of constraint it has been proved in Art. 248

that the virtual moment of each for such a displacement is zero. Consider the

case of a particle constrained to rest on a curve or surface, the virtual moment is

zero for any displacement tangential to the instantaneous position of the curve or

surface. The restriction that the geometrical equations must not contain the tim<

explicitly is not necessary in Lagrange's equations.

If some of the particles are connected together so as to form a rigid body, the

mutual actions and reactions of the molecules are equal. Their virtual moments

destroy each other because each pair of particles remain at a constant distance

from each other. The Lagrangian equations may therefore be applied to

bodies.

506. The Lagrangian equations of motion are therefore

d dL dL d dL dL

The function L=T+U and is therefore the sum of the kinetic

energy and the work function. If we use the function V to repre-

sent the potential energy, we h.-m-. by definition, U+ V equal to

a constant. We then put L= T V, so that L is the difference

between the kinetic and potential energies. Substituting these

values for L, and remembering that U And Vare functions of the

coordinates and not of their velocities, we may also write th<

Lagrangian rquatiuiis in the two typical forms

d <rr <rr dU d dr ,rr dv
didp-3e-d< ff~W+& m

where stands for any one of the coordinates. It should be
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noticed that in these equations, all the differential coefficients are

partial, except those with regard to t.

The function L is sometimes called the Lagrangian function.

We see that when once it has been found, all the dynamical

equations, free from all unknown reactions, can be deduced by

simple differentiation.

5O7. Virtual moment of the effective forces. If we substitute for L in

the lemma of Art. 504 the value of T given by (7) we have

The right-hand side (after multiplication by 50) is the sum of the virtual moments

of the effective forces mx", my", &c. It follows therefore that the Lagrangian

expression on the left-hand side (after multiplication by 86) represents the sum of the

virtual moments of the effective forces, when expressed in terms of the generalized

coordinates 6, 0, &c.

In the same way writing T for the arbitrary function L in (4), we have by (7)

The left-hand side (after multiplication by 86) therefore represents the sum of the

virtual moments of the momenta of the several particles of the system for the displace-

ment 80. It is often called the generalized $ component of the momentum.

5O8. Meaning of the lemma. The fundamental equation represented by
the lemma has been deduced from the principles of the differential calculus without

reference to any mechanical theorem.

Analytically, it expresses the fact that the Lagrangian operator symbolized by

A -A_ A
*~de dt dB'

follows the same law as the differential coefficient djdd, i.e.

which may also be written

A0L . 86= &XL .8x+ AvL . Sy + ...... ,

where 86, 8x, 8y, &c. are any small arbitrary variations consistent with the

geometrical relations which hold at the time t.

If we interpret the lemma dynamically (Art. 506), the equation asserts that the

sum of the virtual moments of the effective and impressed forces for a displacement

86 has the same value whatever changes are made in the coordinates.

5O9. Working rule. When we solve a dynamical problem we begin by

writing down the equation of vis viva, viz. T= 17+ (7.

It appears that when we have done this, Lagrange's method enables us to write

down all the equations of motion of the second order by performing certain

differentiations on the quantities on each side of the equation (Art. 506).
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We shall presently show that before performing these differentiations, we may
remove certain factors from one side to the other by making a change in the

independent variable t ; Art.

510. The function T. We have assumed that the Cartesian

coordinates x, y, z of every particle of the system can be expressed
in terms of the generalized coordinates 6, <f>,

&c. by means of

equations of the form

x-f(t,0.4>,&e.)........................(1);

those CM ^nations may contain t, but not 0', <', &c. (Art. 504). In

choosing therefore the Lagrangian coordinates, we see that they

^ be such that the Cartesian coordinates of every particle could

be expressed if required in terms of them by means of equations

which may contain the time, but do not contain differential co-

efficients with regard to the time.

Differentiating the geometrical equations (1) as in Art. 504

*/=/<+/^-K/if + &c., y'
= &c............. (2),

and substituting in the expression for the vis viva

2T = 2m (*'
2 +/> + *') .................... (7),

given in Art. 505, we observe that 2T takes the form

2T = AnP* + lAvfff + . . . + BJ' + B$ + . . . + C,

where the coefficients A u , &c., Blt B.2 , &c., and C are functions of

t, 6, <, &c.

In most dynamical problems, the geometrical equations do not

contain the time explicitly, i.e. t does not enter into the equations

(1) except implicitly through 0, <, &c. The term/e
will therefore

be absent from the equation (2), Art. 504. Hence x', y', z are

homogeneous functions of 6', <f>',
&c. of the first order. When

substituted in (7), we find that 2 1
7

is a homogeneous < of

0', <', <L-c. of the second order, viz.

J .,, A n , &c. are functions of the coordinates 0, <f>,
&c. but

not of t.

611. Examples of Lagrang'> equations. / r. Two particles, of

M, m, are connected by a light rod, of length /. The first A is constrained to mote

along a smooth fixed horizontal wire, while the other B is free to oscillate in the

vertical plane under the action of gravity. It is required to find the motion.

To fix the positions of both the particles in space, we require two coordinates,

say, the distance of the point A from some origin and the inclination 6 of
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to the vertical. The Cartesian coordinates of B are then x= f + 1 sin and y = I cos 6.

The semi vis viva and work functions are then

T= } M?*+ m {(' + 1 cos 86')*+ (l sin 00')
2
}

imr
z
0'

a
........................ (1),

(2).

Substituting in the Lagrangian equations,

^dT_dT_dU d
L dT_dT_dU

dtd? d
~
1%

'

dt d6f d8
~

dO
'

we have

jt {ml cos
' + mlW } + ml sin efff= - mgl sin

These give

P/+ wi)' + mZco800'= ^, cos0|" + Z0"= -g sin (3),

where A is a constant of integration. Eliminating ,
we have

(M+ m sin2 0) 0'0"+ wsin cos 00' . 0'
2=

-| (M+ m) sin 00'.

This gives by integration

In this way the velocities
' and 0' have been found in terms of the coordinates

We have here used both the Lagrangian equations, but we might have replaced
the second by the equation of vis viva, viz. T=U+C. Eliminating

'

by the help
of the first of equations (3), we should then have arrived at the result (4) without

any further integrations.

512. Ex. 1. The four elementary forms for the acceleration of a point folloio

at once from Lagrange's equations. For example, let us deduce the polar form

given in Art. 493.

We notice that the components of velocity of P along the radius vector and

perpendicular to it, are respectively r' and r0', while that perpendicular to the

plane zOP is rsin 00'. Since these three directions are orthogonal, we have

2T=7H(r'
2 + r20'2+ r2 8in2

Substituting in the Lagrangian equation

d_
dT _ dT_ _ dU

did? d~ ~d
'

where in turn stands for r, 0, 0, we obtain

(mr
8
0')

- mr2 sin cos 00'
''

'

which evidently reduce to the forms given in Art. 493.
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Ex. 2. To deduce the accelerations for moving axes from Lagrange's equations

when the component velocities are knoicn.

We have given by Art. 499,

u = x'-i/0s + z02, v = y'-zOl +x83 , w-z' -xO^ + ye^

Also T=J(u*+ t>* + ic),

the mass of the particle being unity. Since x' enters into the expression for T

only through u, while x enters through both v and ic, we have

dT dT du dT dT dv dT dw
d?

=
*Zd?- M

' dx--fo~dx
+
dW dx'-

ve*- we*'

d dT dT dU
The Lagrangian equation -_-_=_

<Itt

becomes - v0s + u?02
= A".

Ex. 3. To deduce the equation of vis viva from Lagrange's equations.

Multiplying the Lagrangian equations

d dT_dJT_d_U 1 <^[ _ ^ _^
didJ'~de~d0 t

didf' d<t>~~d$'
C"

by $', 0', &c. respectively and adding the results, we have

Id dT\ dT\ dT dU

where - implies summation for all the coordinates.

If the geometrical equations do not contain the time explicitly, T is a homo-

geneous function of $', <f>', <tc., Art. 510, and by Euler's theorem 20' -j^= 22'. Also
(.W

since '/' and U are not functions of t,

dT ^ 6"
dT

\
dU

-<Z6'
de

+ e
dJ')> Tt-

Substituting in the expression given above, we have

dT dTdU

where C is an arbitrary constant, usually called the constant of vis viva.

I. The position of a moving point is determined by the radii l/, 1/ij, 1/f

of the three spheres which pass through it and touch three fixed rectangular

coordinate planes at the 01 i.-:n. I ind the component velocities u, v, v> of the point

in the directions of the outward normals of the spheres, and prove that the com-

ponent accelerations in the same directions are dujdt + v (i/u
-

v)
- w (w -

fu), and

two similar expressions. [Coll. Ex. 1896.]

ng I) = ? + i? + f we deduce from the equations of the spheres that

x= 2{/, Ac. Noticing that the spheres are orthogonal, we find, by resolving the

velocities x*, y*t *' along them, u = - xV$ , v= yiy'/Tj,
tc= -

xf'lf. Hence

Also the acceleration along the axis is dUludt or -^DdUjd^. Substituting in

the Lagrangian formula ~ = ^ ^J
-^ ,

we obtain the required result. It may

also be deduced from the formulae of Arts. 499, 502, 1
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513. To apply the Lagrangian equations to determine the

small oscillations of a system of particles about a position of

equilibrium, when the geometrical equations do not contain the time

explicitly.

Let the system have n coordinates and let these be 0, <, &c.

Let their values in the position of equilibrium be a, /3, &c., and at

any time t, let a + x, <f>
= P + y, &c.

The vis viva being a homogeneous function of 6', </>',
&c. (Art.

510), we have

2T = P<9'2 + 2Q0>' + R<t>'
2 + &c.,

where P, Q, &c. are functions of 0, </>,
&c. When we substitute

= + #, &c. and reject all powers of the small quantities above

the second, this reduces to an expression of the form

2r = ^ 1x2 + 2^ 12^y + ^ 222/
/2 + &c (i),

where the coefficients are constant, and are known functions of

a, A &c.

The work function U is a function of 0, <, &c. and when

expanded takes the form

2U= 2U + 2B,x + 2B$ + &c. + Ba? + ZBrfsy + &c. . . .(2).

We assume that these expansions are possible.

Since the. system is in equilibrium in the position defined by
x = 0, y = 0, &c., we have by the principle of virtual work,

2^=0, ^= 0,&c.; /. J5
1
= 0, 52

= 0, &c (3).

If the position of equilibrium is not known beforehand, the values

of a, /3, &c. may be obtained by solving the n equations (3).

To find the equations of motion we substitute in the n

Lagrangian equations typified by

d dT__dT_dU
dtdx' dx~ dx

Since the expansion for T does not contain the coordinates x,

y, &c., we have dTjdx = 0, dT/dy = 0, &c. The equation (4) there-

fore becomes

Auof' + A l2y" + A^z" + &c. = Bnx +B12y + B,,z +
&c.]" + &c. = Bl2x + B,& + B^z + &c. I . . .(5).

&c. = &c.



ART. 516.] SMALL OSCILLATION 319

To solve the equations (5) we follow the rules given in Art.

-H2. Let any principal oscillation be represented by
_ /">

* / A
j^

\ __ TT* o
* /

yy*/ i
-_\ fiy/* / \

where G, //, &c. are constants. We find by an easy substitution

(A np* + Bu ) G + (A l2p* + #i2)H+ . . .
=

0]

&c. = j

Eliminating the ratios G : H : &c., the n values of p9 are given

by the Lagrangian equation

&c. =0 (8).

&c.

&c. &c. &c.

514. It is shown in the higher dynamics that, because the

vis viva 2T is necessarily positive for all real values of a/, y', &c.,

the values of p
2
given by this determinantal equation are real.

If all the roots are positive the values of p are real, and the

:em of particles then oscillates about the position of equi-
librium. If any or all the values of p* are negative, some or all

the values of p take the form q V- 1. The corresponding

trigonometrical terms in (6) become exponential and the system
does not oscillate. See Art. 120.

515. If a value of p
2
is zero p has two equal zero values, and

the corresponding term in (6) takes the form A + Bt. In such

a case the coordinate may become large and the system will then

depart so far from the position of equilibrium that it will be

necessary to take account of the small terms in (1) and (2) of

higher orders than the second.

516. Rule. When applying Lagrange's equations to any

special case of oscillation about a position of equilibrium w- br^m

by writing down th. xprcssions for the vis viva and work function

for the system in its displaced position, and express these in the

</'/
rms (1) and (2) (Art. 513). If the whole motion is

lired we follow in each special case the process described in

th' general investigation. But if, as usually happens, only

>ds are required, we omit the intervening steps and deduce

th. (Kt nninant (8) immediately frmn the expansions (1), (2).
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To help the memory, we notice that, if we drop the accents in

the expression for T, the determinant (8) is the discriminant of the

quadric Tp- + U.

517. To apply Lagranges equations to determine the initial

motion of a system.

The method has been already explained in Art. 282. The

Lagrangian equations give the values of 0"
', </>"',

&c. in the initial

position without introducing the unknown reactions. Differen-

tiating the Lagrangian equations of Art. 506 we obtain 6"'', <f>" ',

&c., and any higher differential coefficients.

If x, y, z are the Cartesian coordinates of any point P of the

system, we have by Art. 510,

and therefore by differentiation the initial values of x', x", &c.,

y
/

) y", &c., /, &c. may be found. The initial radius of curvature

follows from the formula of the differential calculus, Art. 280.

518. Let, for example, the initial accelerations be required
when the system startsfrom rest The initial position being 6 = a,

(f>
= @, &c. we put, as in Art. 513, = a-\-x, < =

/3 + y, &c. Since

the system starts from rest, the velocities x', y', &c. are small and

we can make the expansions (1) and (2) as before. Since the

initial position is not one of equilibrium, we no longer have Bl
= 0,

B2
= 0, &c. Retaining only the lowest powers of x, y, &c. which

occur in the equations of motion, we have

&c. = &c

These determine the initial accelerations of the coordinates and

therefore the component accelerations of every point of the system.

519. Ex. 1. Let us apply the Lagrangian equations to find the small oscilla-

tions of the two particles described in Art. 511.

The quantities ,
6 represent the deviations of the rod from its position of

equilibrium. The vis viva and work function expressed in quadratic forms are

The determinant is the discriminant of

mlp
2

|
=0.

ml(lp*-g) \
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One principal motion is given by

ptX+* t
= Gsin(p + a), B =H sin (pt + a).

I M
The other is determined by p

2=0; this implies that one coordinate takes the form

A + Bt. It is evident that the rod could be so projected along the horizontal wire

that has this form while = 0.

The student should apply Lagrange's equations to the problems on small oscil-

lations and initial motions already considered in the chapter on motion in two

dimensions. He will thus be able to form a comparison of the advantages of the

different methods.

Ex. 2. Three uniform rods AB, BC, CD have lengths 2a, 26, 2a and masses

HI, in', r/i. They are hinged together at B and C', and &t A, D are small smooth

rings which are free to move along a fixed fine horizontal bar. The rods hang in

equilibrium, forming with the bar a vertical rectangle. When a slight symmetrical

displacement is given, the period of a small oscillation is given by 4;/ia^
2= 3<7 (m + m').

Find also the periods when the displacement is unsymmetrical. [Coll. Ex. 1897.]

{. Two equal strings AC, BC have their ends at the fixed points A, B, on

the same horizontal line, and at C a heavy particle is attached. From C a string

CD hangs down with a second heavy particle at D. Find the periods of the three

small oscillations. [The two periods of the oscillations perpendicular to the verti-

cal plane through A and B are given in Art. 300, Ex. 1.]

520. Solution of Lagrange's Equations. Our success

in obtaining the first integrals of the Lagrangian equations will

greatly depend on the choice of coordinates. When the position

of the system is determined by only one coordinate, the equation
of vis viva is the first integral, and this is sufficient to determine

the motion.

When there are two or more coordinates, integrals can be

found only in special cases. The general problem of the solution

of the Lagrangian -,

(
nations is too great a subject to be attempted

hT.-. It IN MiHiri.-nt to state a few elementary rules which may
assist the student.

521. \N should, if possible, so cAno.sr flu- f<>< >/'</{nates that some

one of them is absent from the expression for the work function U.

For example, it there be any direction such that the component
of tlx impressed forces is zero throughout the motion, we should

take the axis of z in that din <t inn and let z be one of the co-

ordinates. Again if the mm. he forces about some straight
line fixed in space, say Oz

t is always zero, the angle <f>
which the

ne POz makes with xOz will be a suitable coordinate. In that

case dU/d<t> = and U is independent of 0. These, or similar,

I]
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mechanical considerations generally enable us to make a proper

choice.

Let 6 be the coordinate absent from the work function, then

if 6 is also absentfrom the expressionfor T, though the differential

coefficient & is present, the Lagrangian equation

d dT dT dU , dT
dtde'-do

=
de

becomes w = A
>

where A is the constant of integration. Thus a first integral,

differentfrom that of vis viva, has been found.

522. Liouville's integral. Liouville has given an integral of Lagrange's

equations which has the advantage of great simplicity when it can be applied.

This may be found in vol. xi. of his Journal, 1846
;
the following is a slight modi-

fication of his method.

Let us suppose that the vis viva has the form

2T=M(Pe'*+Q<t>'*+ Rt"t + &c.) ........................... (1),

where the products 6'<f>', Q'ty', &c. are absent. The method requires that the co-

efficient P should be a function of 6 only, while Q, E, d'c., are not functions of 6.

We notice that M may be a function of all or any of the coordinates, and Q, R, &c.

functions of any except 6. It is also necessary that the impressed forces should be

such that the work function U has the form

M(U+C) = F1 (0)+F(<I>, ^ Ac.) ........................... (2),

where C is the constant in the equation of vis viva,

T=U+C .......................................... (3).

We shall now prove that when these conditions are satisfied, a first integral is

M*P6'*=Fl (e)+A ................................. (4).

We first put P0'2 =|'
2
, then is a function of 6 only and we may temporarily

take , 0, ^, &c - *8 the coordinates. We now have

T= \M.(* + Q0'
2 + &c.) = U+ C,

and the Lagrangian equation for is

Using the equation of vis viva, this takes the form

$a*HCB+i5+5-j
Substituting on the right-hand side from (2) and multiplying by ', we have

Since Fa (d) is a function of and not of any of the other coordinates, this

gives by an easy integration

Keturning to the coordinate 8, we have the integral (4).

When the initial conditions are given, the value of C can be found by introduc-

ing these conditions into the equation of vis viva. If a solution is required for all
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initial conditions C is arbitrary and in that case the condition (2) requires that

both Ml' and M should have the general form indicated on the right-hand of that

equation. If

and Q, R, &c. are respectively functions of #, $, &c. only, it is evident that the

method supplies all the first integrals.

If T= M(Pe^ + Q^) t A/=/,(0)+/2 (0), *vt/= *i(*)+-*2(0). integrate

the Lagrangian equations by Liourille's method. The integrals are

adding these and using the equation of vis viva we see that A
1
+ A Z

= Q. The paths

are then given by

M '

Multiplying these by /, , /2 and adding, the time is found by

.Pde MQd*
x :.

-

A,) **J(F, + Cfs+AJ
^

where all the variables have been separated.

523. Jacob! 's integral. If T be a homogeneous function of the coordinates

6, 0, Ac. of n dimensions and U a homogeneous function of the same coordinates

of -
(n + 2) dimensions, then one integral is

where C is the constant of vis viva and A an arbitrary constant.

To prove this, we multiply the Lagrangian equations by 0, <p, &c. and add the

products. Remembering Euler's theorem on homogeneous functions, we have

The left-hand side is the same as

since T is a homogeneous function of 0', <', A-c. of two dimensions. Remembering

that T- t/=C, we have 0, + &c.l =(n + 2)C.

A free system of particles moves under the influence of their mutual

attractions, the Uw of force b verse cube: show that 2mr*=^ +Bf + Ct*

where r is the distance of the particle HI from the origin.

(VorUtungen iiber Dynamik.]

Some development* of these results are given in the first volume of the author's

treatise on Rigid Dynamics.

624. Change of the independent variable. It /> s.nu.-tnn,* .-/,. 'V r<> be able

hange the independeti
1 / -igrange's equations from t to some other

'H r so that dr = Pdt, where P is any function of the coordinates.

oppose that the geometrical equations do not contain the time explicitly,

so that T is a homogeneous function of the form

0'*+ <!)

212
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Let suffixes applied to the coordinates mean differentiations with regard to r

just as accents denote differentiations with regard to t. Then

e' = PB
l , 0' = P<h, &c.

Consider how any one of Lagrange's equations, say,

d_dT__dT_dU
dtdtf d<fi d<f>"

is affected by the change of t. Let us write

T*=(WiA*+ Au!*i*i + ......)* ........................... (3).

Supposing that P is a function of the coordinates only, not of 6', <f>', &c., we have

The Lagrangian equation therefore becomes after a slight reduction

dT
2 _dT^__T^dP 1 dU

dr dfr d<f>~ P d<f>

+ P d$'"

If we use the equation of vis viva, viz. T=U+C, and notice that T=PT2 ,
the

ht-hand side of this e

therefore takes the form

right-hand side of this equation becomes =- -
. The typical Lagrangian form

a<p r

d_dT^_dT^_d_ U+C
dr d^ d<f>~d<f> P

We notice that though T=PT2 , they are differently expressed. To obtain the

partial differential coefficients of T2 , the quantities 6', <f>', &c. must be replaced by

P0lt P0lt &c. before differentiation.

Suppose for example that the equation of vis viva (Art. 509) is

T=H {%Ae'* + &c.} = U+C,
and that we wish to remove the factor M before deducing the Lagrangian equations.

Changing the independent variable so that dr= Pdt, we deduce the Lagrangian

equations by operating on

.

Choosing 3/P=l, we have

T2
=i^^2 + &c., UZ

=M(U+C).
The factor H has thus been transferred from the expression for the vis viva to

the work function. Here M is a function of the coordinates only.

We may now change the suffixes into accents if we remember that the differen-

tiations are to be taken with regard to T instead of t. This difference is of no

importance if we require only the paths of the particles and not their positions at

any time. If the time also be required, we add the equation dt = Mdr.

525. Orthogonal Coordinates. The Lagrangian equations are much sim-

plified when the expression for T can be put into the form

where the products 6'$', &c. are absent. We shall now prove that this will be the

case when the coordinates of the particle are the parameters of systems of curves

or surfaces at right angles.
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Let the equations of three systems of surfaces which intersect at right

angles be /, (x, y, z)=plt >=ps , /3 (x, y, z)=p3 ............ (1),

where p,, />.,, p, are three constants or parameters whose values determine which

surface of each system is taken. These parameters may be regarded as the co-

ordinates of the point of intersection of the three surfaces.

Such coordinates are called sometimes orthogonal coordinates and sometimes

curvilinear coordinates. Their theory was given by Lam6 in his Lecon* sur Us

coordomues curvilignes, 1859. In what follows we adopt his notation as far as

possible.

As an example of orthogonal coordinates we call to mind a system of confocal

ellipsoid* and hyperboloids of one and two sheets, the lengths of the major axes

being usually taken as the parameters. These are called elliptic coordinates. We
may also notice that all the coordinates in common use, whether Cartesian, cylindrical

or polar, are orthogonal. In the first the point is defined as the intersection of

three orthogonal planes, in the second we use a cylinder cut by two planes, and in

the third a sphere cut by a right cone and a plane.

Let (aj, &j, cj be the direction cosines of a normal to the surface whose

parameter is pl ,
then

Let ds
l
be an elementary arc of the intersection of the two surfaces p.j, p3 ; then

ds
l
is also an elementary length measured along the normal to the surface p, . As

we travel along this arc x, y, z and pA vary, while p., , p3 are constant. Hence

(4).

But the left side is the sum of the projections of d.r t dy, dz on the normal and is

therefore ds
l ; hence ds^ = dpjh }

. It follows that the component r, of velocity

along the normal to the surface p, is v
l
= - y1

. In the same way the components

of velocity normal to the other two surfaces may be found, and since these are at

right angles,

where accents denote differential coefficients.

In order to use this expression, it will be necessary to express >,, V V in

terms of the new coordinates p,, ft, p3 . To effect this we solve the equations (1)

and determine x, y, z as functions of p,, p2 , p,; finally substituting these values in

the expressions (8) for ft,, /i,,
/i 3 . This is sometimes a lengthy process.

Motion on a Curve.

526 Fixed Curves. '/', n,,,I th<- nation of a particle on a
smooth curve fixed in space.

To find the velocity, we resolve the forces along the tangent
to the curve. If F be the component of the impressed forces
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X, Y, Z, this gives as in Art. 181,

dv r, v dx
mv j-

= F=X ^- + -f- + , .

ds ds ds ds

If U be the work function, F=dU/ds, and we have

dy
-f-
ds

which is the equation of vis viva.

To find the pressure, we resolve in any two directions which

may suit the problem under consideration. Supposing that we

choose the radius of curvature and binomial, we have

where (7, H are the components of the impressed forces; R lt R.>

the corresponding components of the pressure on the particle.

These equations show that the pressure of the particle on the

curve is the resultant of two forces, (1) the statical pressure due

to the forces urging the particle against the curve, (2) the centri-

fugal force mv2

/p acting in the direction opposite to that in which

p is measured, Art. 183.

527. Ex. 1. A plane is drawn through the tangent at P making an angle t

with the osculating plane. If p' be the radius of the circle of closest contact to

the Qurve in this plane, then
-,

G' + E' where (?' and E' are the components of

the impressed accelerating force and of the pressure respectively.

This follows from the theorem on curves p' cos i = p, corresponding to Meunier's

theorem on surfaces.

Ex. 2. A helix is placed with its axis vertical, and a bead slides on it under

the action of gravity. Find the motion and

pressure.

Let a be the radius of the cylinder, a the

inclination of the tangent to the horizon.

Drawing PL perpendicular to the axis of z, the

radius of curvature is a length measured along

PL equal to a sec2 o. If PT is the tangent, the

osculating plane is LPT. If the helix is smooth

we have
v2 cos2a_^j

a
~
m '

4
m '

If the particle start from rest at a height h,

we see that C= 2gh. Since v= -dsjdt and da sin a dz, we find that the time of

descending that height is coseca*J2hlg.
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If the helix is rough, the friction is ^^(Rf + RJ). Supposing that the coefficient

of friction is M = tan a, the resolution along the tangent becomes

dv sin a
,

v
-j-=

- g sin a +-- ^(v
4 cos2 a + a*g*) ;

writing r2 cos a = for brevity, we find

i

To integrate this we multiply the numerator and denominator of the fraction

on the left-hand side by the denominator with the minus sign changed. We
then find

a q -i- J(r4 cos2 a + a2o2) sin 2av
- -= +C.

v9 cos a a

To find C we require the initial value of r. If this were zero the particle would

remain at rest because /*=tan a.

3. A rough helical tube of pitch a and radius a is placed so as to have

its axis vertical and the coefficient of friction is tan a cos e. An extended flexible

string which just fits the tube is placed in it: show that when the string has fallen

through a vertical distance ma its velocity is (ag sec a sinh 2/u)^, where /A is

determined by the equation

cot i f tanh /A= tanh (/i sin e + m cos a sin 2e). [Math. Tripos, 1886.]

t. Two small rings of masses m, m' can slide freely on two wires each of

which is a helix of pitch j>, the axes being coincident and the principal normals

common ;
the rings repel one another with a force equal to /xmm'r when they are at

a distance r from one another. Prove that if be the angle the plane through one

ring and the axis makes with the plane through the other ring and the axis, the time

in which
<f>

increases from a to ft is /
{ A<f>*

- 2B cos + C }

~
* d$, where

and a, & are the radii of the cylinders on which the helices are drawn.

[Coll. Ex. 1896.]

628. Moving curves, l-'.r. 1. A particle P is constrained to move on the

plant curve Z=f(jr), which rotate* about a atraiiiht

. ith an angular velocity o>.

required to form the eifuntion* of motion.

Applying to P an acceleration w-.r tending

from the axis of rotation, we treat the curve as

if it were fixed, Art. 495. Taking the tangential

and normal resolutions, we have

where v is the velocity of the particle rrlt,r,-ly to the curve, f the angle the tangent

at P makes with the axis of x, and p in the radius of curvature. Also F and Q are

the components of the impressed -forces along the tangent and radius of curvature

at /'.

We may replace the first of these equations by the integral of vis viva, vis.
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The second equation then gives the component R of pressure in the plane of the

curve. The component R' of pressure perpendicular to the plane of the curve

is given by

m
~x Jt

<**) = +*'

where H is the corresponding component of the impressed force, and x is the

distance of the particle from the axis of rotation.

Ex. 2. A circular wire is constrained to turn round a vertical tangent Oz with

a uniform angular velocity w. A heavy smooth

bead, starting from the highest point A without

any velocity relative to the curve, descends under

the action of gravity. Find the velocity and

pressure.

Let C be the centre, 0(7= a; let P be the

particle, the angle ACP=0, v = add}dt. We re-

duce the plane to rest by applying to P an accele-

rating force measured by urx, wherea:= a + asin^,

and acting parallel to 0(7. The equation of vis

viva then gives

v2= </(a-acos0) + w2 / xdx\
J a

.: v*= 2g(a-a cos 6) + w2a2 (2 sin 6 + sin2 0).
%

The components R, R' of the pressure on the particle respectively along PC and

perpendicular to the plane are given by

The latter equation reduces to R'= 2muv cos 0.

Ex. 3. Two small rings of masses m, m',.(m>m') are capable of sliding on a

smooth circular wire of radius a, whose vertical diameter is fixed, the rings being

below the centre and connected by a light siring of length a*j2: prove that if the

wire is made to rotate round the vertical diameter with an angular velocity

\_9 mv ~ra(
^
tjje rjngs can be in relative equilibrium on opposite sides of the

(a^/3 m-m
}

vertical diameter, the radius through the ring m being inclined at an angle 60 to

the vertical. Show also that the tension of the string is
,

~
g.m ni fj 2i

[Coll. Ex. 1897.]

Ex. 4. A smooth circular cone of angle 2a has its axis vertical and its vertex,

pierced with a small hole, downwards. A mass M hangs at rest by a string which

passes through the vertex and a mass m attached to the upper extremity describes

a horizontal circle on the inner surface of the cone. Find the time T of a complete

revolution, and prove that small oscillations about the steady motion take place in

the time T cosec a
{ (M + m)/3iw}*. [Coll. Ex. 1896.]

Ex. 5. A smooth plane revolves with uniform angular velocity w about a fixed

vertical axis which intersects it in the point O, at which a heavy particle is placed

at rest. Show that during the subsequent motion v2=p-wz + '2gz; where z is the

depth of the particle below O, p its distance from the axis and v the speed with

which the path is traced on the plane. [Coll. Ex. 1893.]
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529. A case of free motion witn two centres of force. Ex. 1. A particle P,

<it jnass, it cotutrtiint'tl t" move along an elliptic irirc without inertia ichich can

turn freely about it* major axis. The particle is acted on by two centres of force,

situated in the f<>ci >', //. irhirh attract according to the law of the inverse square.

Prove that the pressure on the curve is zero in certain cases.

We take the major axis as the axis of : and the origin at the centre. Let w be

the angular velocity of the wire. Representing the distance of the particle P from

the major axis by y, the component R' of pressure on the particle perpendicular to

the plane of the curve is given by

But since the wire is without inertia, i.e. without mass, the wire moves so that

the pressure n' on it is zero, Art. 267. We therefore have throughout the motion

where B is the constant of angular momentum about the axis of rotation.

Let the distances of the particle from the foci S, H be rlt r,; and let the central

forces be r 3 Mr 2
.

To find the motion in the plane zOP, we apply to P an acceleration w2 /

tending from the major axis, and then treat the curve as if it were fixed. We
notice that the particle could freely describe the ellipse under any one of the forces

Mi/Vi A4/r,
5
, B*ly* if properly projected; see Arts. 333, 323. It immediately

follows that if all the three forces act simultaneously, the pressure on the particle

will be a constant multiple of the curvature, Art. 272.

The pressure will be zero, if the square of the velocity of projection is equal
to the sum of the squares of the velocities when the particle describes the curve

v under each force separately; Art. 273. We find therefore that if TJ be the

velocity relatively to the curve, the pressure is zero, if

l>e the resultant velocity of the particle in space, we have v9= r,
2 + w't/** Hence

When the pressure is zero, the wire may be removed and the particle describes

its path freely in space under the action of the two given centres of force. The

general path under all circumstances of pro - not been found. // the

along the tangent t,> an,/ lnf 9, // for foci with a

velocity whose component /,* is vlt and whose component

perp r'= wy= B/y, it will c.mtinn, t Wpte
nwve* round the *trai,,ht line SH with a

angular velocity w

If the particle is also acted on by a third centre of force situated at the

re and attracting according to the direct distance, prove that the pressure on

the revolving wire is zero in certain oases.
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63O. K.r. A particle P of unit mass moves on a smooth curve which is con-

ttrained to turn about a fixed axis with an angular velocity w. It is required to

find the relative motion.

Let the axis of rotation be the axis of z and let the axes of x, y be fixed to the
curve and rotate round Oz with the angular velocity w. Let us refer the motion to

these moving axes. Since 0i = 0, 2
= 0, 3

= w, the equations of Art. 499 become

du _dx
'Tt~

lu '

~~dt

dv _ dy
:

dt
+VU '

V=
Tt

dz

(1),

where Rlt jR2 ,
R

3 are the components of the pressure on the particle. Eliminating

u, v, w,

(2).

The resultant of the two accelerating forces X
l
= urx, Y

l
= wz

y is a force tending

directly from the axis of rotation and whose magnitude is F
1
= ui

2
r, where r is the

distance of the particle P from the axis.

The resultant F2 of the two forces X^ydwfdt, F2
= - xdwjdt is Fz

= -rdu/dt,

and it acts perpendicularly to the plane containing the axis of rotation and the

particle in the direction in which the angular velocity w is measured.

To find the resultant Fa of the forces X3
= 2wdyldt, Y3

= -Vudxjdt, we notice

that the component along the tangent to the curve, viz. X3dxjds + Ys dyjds, is zero.

The resultant acts perpendicularly to the given curve, and may be compounded with

and included in the reaction. When only the motion of the particle is required,

the force Fs may be omitted.

Reasoning as in Art. 197, we see that the equations of motion (2) become the

same as if the particle were moving on a fixed curve, provided we impress on the

particle (in addition to given forces X, Y, Z) two accelerating forces, viz. (1) a force

]'\
= urr and (2) a force I\= -rdu/dt.

The process of including the two forces F
lt
F2 among the impressed forces is

sometimes called reducing the curve to rest.

The curve having been reduced to rest, the velocity of the particle relatively to

the curve is found either by the equation of vis viva or by resolving along the

tangent. We find

u*rdr- r.
j

where U represents the work function. If the angular velocity is uniform, this

reduces to

The velocity thus found is the velocity relative to the curve. The actual velocity

in space is the resultant of velocity v and the velocity ur of the point of the curve

instantaneously occupied by the particle.
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531. The pressure of the fixed curve on the particle is not the same as the

actual pressure of the moving curve. Representing the first by R' and the second

by R, we see that R f

is the resultant of jR and the two forces X, = 2wdt//dt,

T,= -2udxfdt. We may compound these two forces into a single force Fs . We
project the moving curve on a plane perpendicular to the axis of rotation. If P'

be the projection of P, dxjdt and dyjdt are the component velocities of P. The

resultant is then evidently F9 =%wv' where v' is the velocity of P' relatively both

to the curve and its projection. The direction of F3 is perpendicular not only to

the given curve but also to its projection. The components along and perpendicular

to the radius vector are +2urdd/dt and -2wdr/df.

532. />. A small bead slides on a smooth circular ring of radius a which

is made to revolve about a vertical axis passing through its centre with uniform

angular velocity w, the plane of the ring being inclined at a constant angle a to the

horizontal plane. Show that the law of angular motion of the bead on the ring is

the same as that of a bead on the ring of radius a/sin a revolving round a vertical

diameter with angular velocity u sin a. [Coll. Ex.]

533. A changing curve. A bead of unit ma** moves on a smooth curve

whose form w chdnyinn in >nu/ fjiven manner. It is required to find the motion.

Let the equations of the curve be written in the form

*=/,(*, 0. y=/t(*. ), *=/a (*> .................. (i).

where 6 is an auxiliary variable. We may regard the position of the particle at

any given time t as defined by some value of 6. Our object is to find 6 in terms of

the time.

Let us use Lagrange's equations. We have

r=iz(/^' +/,)-
................................... (2),

where 2 implies summation for all the coordinates, and partial differential coeffi-

cients are indicated by suffixes. The Lagrangian equation is

d dT dT dU

(4).

This is a differential equation of the second order from which 6 may be found.

hree components of the pressure on the particle in the directions of the

axes may be found by differentiating the equations (1). If A, )'. '/., be the com-

ponents of the impressed forces; Rlt fla ,
Rt those of the pressure, the Cartesian

equations of motion are

Since the pressure must be perpendicular to the tangent to the instantaneous

position of the curve, we do not necessarily require all these equations, though it

may be convenient to use them.

534. /.>. A helix is constrained to turn about its axis Oz, which is vertical,

with a uniform angular veloc; I the motion of a particle of unit mass

descending on it under the action of gravity.

Let the axes OA, OB move with the curve and let OA make an angle ut with

some axis of x fixed in space. Let the angle AON=0. See the figure of

Art. 527.



332 MOTION ON A SURFACE. [CHAP. VII.

The equations of the helix referred to axes fixed in space are

y = a sin (6 + ut), z

Substituting in Lagrange's equation, we find after a little reduction

ad" - g sin a cos a,

which admits of easy integration. It should be noticed that this result is inde-

pendent of the angular velocity of the guiding curve, provided only it is constant.

A similar result holds for any curve on a right circular cylinder turning uniformly
about its axis.

To find the pressure of the helix on the particle we use cylindrical coordinates,

Art. 491. Let P, Q, R be the components of the pressure, then since in the helix

p= a, <t>
= + wt, we find by substitution

P=-a(0'+ w)
2
, Q = aB", Z - g= at&n ad".

These show that the pressure on the particle is equivalent to a sustaining force

g cos a acting perpendicularly to the osculating plane together with the radial

pressure P.

Motion on a Surface.

535. Any Surface. To find the motion of a particle on a

fixed surface.

Let P be the position of the particle at the time t, Prj a

_______ tangent to the path, Pf a normal to

the surface, and Pf that tangent to

the surface which is perpendicular to

the path. Let PC be the radius of

curvature of the path, PA the bi-

normal, then PA, PC lie in the plane

ff . Let x be the angle <7Pf

Let X, Y, Z be the resolved impressed forces parallel to

any axes x, y, z fixed in space. Let the equation of the surface

The resolved accelerations of the particle in the directions

PA, Prj, PC are known to be zero, vdv/ds and vz

/p respectively,

Art. 496. Hence resolving in the direction PTJ,

dv v dx ,Tdu rjdz
mVj-=X-j--}- Y-/- + Z-J-,ds ds ds ds

which if U be the work function at once reduces to

$m*=U + C ........................ (1).

This is the equation of vis viva.
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R be the pressure of the constraining surface on the

particle measured positively inwards. Then resolving along
the normal,

-
P

where H is the component of the impressed forces. If p be the

radius of curvature of the normal section rjP of the surface

made by a plane through the tangent to the path, it is proved
in solid geometry that p

= p cos ^. We therefore have

........................... (2).

536. If a, b are the radii of curvature of the principal sections of the surface

at P, the angle the tangent to the path makes with the section a, we have by
Euler's theorem

1 _ cos2 sin2

p'~~~j~ b

Let (] , v., be the resolved velocities of the particle along the tangents to the

principal sections, then v
l
=v cos0 and v2

= t7 sin 0. The equation (2) then takes

the form

CM) H+R.

537. If the forces are conservative, the velocity of the particle

is given by the equation (1) in terms of its coordinates at

UK/ of the initial conditions. To determine the velocity

at any point we do not require to know the path by which the

particle arrived at that point (Art. 181).

'I'h. |nv^uiv R is given by (2) in terms of the velocity at

that point, the normal component of force and the radius of

curvature of the normal section of the surface through the

tangent. The pressure is therefore also lent of the path.

The whole energy C be //. the pressure depends on the

position of the particle and the Direction of mnt'mn.

The equation (2) shows that the acceleration of the particle

normal to the surface is v*/p. It i^ then-ton- independent of the

position of the osculating plane hut drjirinU on th<- direction of

motion.

538. To :md the path of the particle we resolve in some

third direction. Choosing the direction P, we have

.
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where F is the component of the impressed force along that

tangent to the surface which is perpendicular to the path. This

may also be written in the forms

where p" is the radius of curvature of the projection of the path
on the tangent plane. It is also called the geodesic radius of

curvature.

539. Geodesic path. If the only impressed forces acting

on the particle are normal to the surface, F = 0, and the third

equation shows that either sin ^ = or that the path is a straight

line. The path is therefore necessarily a geodesic line.

If the surface is rough, the friction acts opposite to the

direction of motion, and F would still be zero. So also if the

particle moves in a resisting medium the resistance is opposite to

the direction of motion. Generally we conclude that the path of
a particle on a rough surface in a resisting medium when acted on

by forces normal to the surface is a geodesic.

Conversely, ifthe path is a geodesic line we must have sin % =
and therefore F 0. The component of the impressed force tan-

gential to the surface must then also be tangential to the path.

540. To find the radius of curvature of the path and the

position of the osculating plane when the position and direction of
motion of the particle are given.

To effect this we use the two equations

mtf .
-r,

1 cos2
<f> sin2

< cosy
smy = JP,

- = ~ r + T-^-= -
.

p p a b p

The particle being in a given position, v*, a and b are known.

Since
<f>

is the angle the direction of motion makes with the

principal section whose radius of curvature is a, we have

F= A cos < -I- B sin <,

where A and B are the given components of impressed force

along the tangents to the principal sections. Thus the values of

both sin %/p and cos %/p follow at once.
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541. Motion on a surface of revolution. When the

nice on which the particle moves is one of revolution, it is

generally more convenient to use cylindrical coordinates.

Let the axis of figure be the axis of z and let f be the

distance of the particle P from that axis. Let the equation of

the surface be z f (). Let U be the work function, and let the

mass be unity. The equation of motion obtained by resolving

perpendicularly to the plane zOP is

1 d , dU

We have also the equation of vis viva

............... (2),

which, by using the equation of the surface, may be written in

the form

iP
{l
+
(I)}

+ iff = U+C ............ (3).

Here accents denote differentiations with regard to the time.

By solving (1) and (3) we determine the two coordinates f, </>

in terms of the time.

In certain cases the solution can be effected. The equation

(1) gives

Let the impressed forces be such that

W-KW + FM.*) ..................... (*),

re Flt Ft are arbitrary functions. We then have

:ituting this value of
<f>'

in (3) we HIM!

A. .(6)1

ce f is a known function of f, the variables in this equation
are separable. The determination of f as a function of t has

refore been reduced to integration. The differential ^ nation

"t the path is found l.y <lm<lm^ ( :>) by (6). It is evident that

h- TO also the variables are separable.
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Since the expression for the vis viva, given in (3), can be

\vritten in the form

where P is a function of only, this solution is an example of

Liouville's method of solving Lagrange's equations ;
Art. 522.

542. Motion on a sphere. When the surface on which

the particle moves is a sphere, we may use polar coordinates, the

centre being the origin. The equations corresponding to (1) and

(3) of Art. 541 are found by putting =/sin#, where I is the

radius
;
we then have

F^(sin
2

6tyO
=
jf > '$l

2

{6'* + sirf0<l>'*}= U+C.

These admit of integration when U, expressed in polar coordinates,

has the form

The resulting integrals are

$l
9
wtf0<l>'* = Fl (l,<l>) + A )

\V sinW2 = F, (I, 6) + C sin2
<9 - A

j

'

543. Examples. Ex. 1. A particle of mass m moves on the inner surface

of a cone of revolution, whose semi-vertical angle is a, under the action of a

repulsive force m^lr
3 from the axis ; the angular momentum of the particle about

the axis being m^/itana; prove that its path is an arc of a hyperbola whose

eccentricity is sec a. [Math. Tripos, 1897.]

Resolve along the generator and take moments about the axis, thus avoiding

the reaction, Art. 541. These prove by integration that the path lies on a plane

parallel to the axis. The angle between the asymptotes is therefore equal to the

angle of the cone.

Ex. 2. A particle P moves on a sphere of radius I under the action both of

gravity and a force X=fjijx
s
tending directly from a vertical diametral plane taken

as the plane of yz. Show that the determination of the motion can be reduced

to integration. If the particle is projected horizontally from the extremity of the

axis of x, show that when next moving horizontally, it is in a lower position.

Ex. 3. A particle is acted on by a force the direction of which meets an

infinite straight line AB at right angles and the intensity of which is inversely

proportional to the cube of the distance from AB. The particle is projected with

the velocity from infinity from a point P at a distance a from the nearest point

of the line in a direction perpendicular to OP and inclined at an angle a to the

plane A OP. Prove that the particle is always on the sphere the centre of which

is 0, that it meets every meridian line through AB at the angle a, and that it

reaches the line AD in the time a2 sec a/^/x, where
fj.

is the absolute force.

[Math. Tripos, I860.]
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Ex. 4. A particle moves on a spherical surface of unit radius, its position

being determined by its polar distance 9 and its longitude 0. If the tangential

acceleration is always in the meridian, and sin-6dif>ldt = h, cot0 = u, prove that

its value is fc
2
(1 + u2

)
( u +

'"
\ .

Prove also that the law of force perpendicular to the equatorial plane under

which the sphero-conic .
- =-: = . , + -? can be described is that of the inverse

sin2 sm2 a sin3 6

cube of the distance. [Math. Tripos, 1893.]

">. A particle moves on a smooth helicoid, z = a<f>, under the action of a

force pr per unit mass directed at each point along the generator inwards, r being
the distance from the axis of z. The particle is projected along the surface

perpendicularly to the generator at a point where the tangent plane makes an

angle a with the plane of xy, its velocity of projection being a^//*. Prove that the

equation of the projection of its path on the plane of xy is

l + a/r
a= seca {cosh (0/cosa)}

2
. [Math. Tripos, 1896.]

644. Cylinders. Ex. 1. A particle moves on a rough circular cylinder

under the action of no external forces. Prove that the space described in time t is

-
log

(l
+ ^-

*~ at
\ where the particle has initially a velocity V in a direc-

tion making an angle a with the transverse plane of the cylinder.

[Math. Tripos, 1888.]

Ex. 2. A heavy particle moves on a rough vertical circular cylinder and is

projected horizontally with a velocity I*. Prove that at the point where the path
cuts the generator at an angle 0, the velocity v is given by

agfv* sin8 = agfV9 + 2/* log (cot + cosec 0),

and that the azimuthal angle 6 and vertical descent z are ag6 = jv'
2
d<p and

02 = Jv* cot0d0, the limits being 0=$ir to 0. [Math. Tripos, 1888.]

The cylindrical equations of motion give

(v sin 0)= - ^ r* sin8 0, j (v cos 0) = g - - v* sin2 cos 0.

limiimtiMi/ dt and putting v = l/tf we obtain the first result. Secondly

eliminating n we obtain the others.

.'i. A smooth cylinder whose cross section is a cardioid is placed with its

generators inclined at an angle a to the vertical and having the generator through
the cunp it *t position, and a pnrtirlr i

-

projected from the cusp line \\ith

velocity V along the inner surface of the cylinder inclined at an angle ft to the

generator; show that it will leave the surface if
F*<jj

fl

j."a
na

, where 2a U the

breadth of any section through the < [Math. Tripos, 1887.]

646. String on a urface. Kr. 1. A string, one end of which is fastened

at a point of the surface of a smooth circular cylinder whose axis is vertical, winds

rou i nder for part of its length, and terminates in a straight portion of

th < at the end of which a particle is tied. Show that when the particle is

. t.il in th.- direction horizontal and perpendicular to the string it begins to

or fall according as the velocity is greater or less than sin a (gc seo a)* ; a being

.ingle at which the string oats the generators.

u. .). 22
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Prove also that during the ensuing motion -
(r

2
w) + aw3=0; r being at any

time the length of the projection of the straight portion of the string on a

horizontal plane, w the angular velocity of the vertical plane drawn through the

string and a the radius of the cylinder. [Coll. Ex. 1895.]

Ex. 2. A string is wound round a vertical cylinder of radius a in the form of

a given helix, the inclination to the horizon being i. The upper end is attached to

a fixed point on the cylinder, and the lower, a portion of the string of length
I sec t having been unwound, has a material particle attached to it which is also in

contact with a rough horizontal plane, the coefficient of friction being /t*.

Supposing a horizontal velocity V perpendicular to the free portion of the string

to be applied to the particle so as to tend to wind the string on the cylinder,

determine the motion and prove that the particle will leave the plane after the

projection of the unwound portion of the string upon the plane has described

an angle

log . ^ a . f.

a
lt
-

:
-

. [Math. T. I860.]
2/Uani 22 -'

Ex. 3. A fine string of length I is fastened to a point A of a smooth cylinder

of radius a, and, being wound round the cylinder, has a particle of given mass

attached to the free end. Show that, if the particle is projected in any direction,

it will, so long as the string is tight and some portion of it remains wound on the

cylinder, describe a geodesic line on the surface

where the axis of the cylinder is the axis of z, and the axis of x is the radius

through A.

Show also that the particle cannot be so projected that the string shall not slip

on the cylinder, except when the path lies in the plane of the circular section of

the cylinder drawn through A. [Math. Tripos, 1893.]

546. Gauss' coordinates. The motion of a particle on a surface may also

be investigated by using the geodesic polar coordinates of Gauss. In this method

every surface has a geometry of its own, in which all the lines under consideration

are drawn on the surface. The geodesies on the surface correspond to straight

lines on a plane, and the properties of the figures are discussed by reasoning

analogous to that of two dimensions.

Let be any origin, p the length of the geodesic drawn from to any moving

point P. Let w be the angle OP makes with some fixed geodesic Ox. Let OP' be

a neighbouring geodesic, PL the perpendicular to OP'. Then in the limit LP' = dp,

PL = Pdu. The theorem that OP=OL is proved in Salmon's Solid Geometry,

Art. 394, edition of 1882. The quantity P is a function of p and w, whose form

depends on the particular surface under consideration. On a plane P=p, and on

a sphere of radius a, P=asin/>/a. On an ellipsoid when the origin O is at an

umbilicus, P= y cosecw, where w is the angle the geodesic OP makes with the arc

containing the four umbilici. The difficulty of finding the value of P for any
surface prevents this method from coming into general use.

The vis viva 2T of a particle of unit mass is given by

where accents as usual denote differential coefficients with regard to the time.
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Let U be the work function ; F, G the accelerations at P along and perpendicular

to the geodesic radius vector OP. We have by Lagrange's theorems,

d_*T_dT_dU_ , F_,,_ pdP
dt dp' dp' dp'

*
dp

u

d_dT_dT_dU_ . G= ld dP
dtd<*' d~dw~ ( '

Since -3- = -v- p' + -
w', this reduces to

dt dp
r dw

(2).

547. We may also arrive at these results without using Lagrange's equations.

Let H, r be the component velocities of P along and perpendicular to the tangent
PT at P to the geodesic OP. Let P'T be the projection of the tangent to OP on

the tangent plane at P. Since the tangent planes at P, P' make an indefinitely

small angle with each other the component velocities at P along and perpendicular

to PT are u + du and v + dr. If dd be the angle PT makes with PT', the accele-

rations along and perpendicular to PT are (as in Art. 225),

, du dd
,

dv deF
=Tt-

V
at>

=
di
+ U

d-t'

Now M=p', r = Pw', and by a theorem proved in Salmon's Solid Geometry, Art.

392, d0= -r-du. We therefore have
dp

These reduce to the same forms as before.

648. A'.r. A particle P, constrained to move on an ellipsoid, is attached to

an umbilicus by a string of given length, which also lies on the surface. Prove

that the particle describes a geodesic circle with a uniform velocity Vt and that the

angular velocity of the string about the umbilicus is V sin ujy. Prove also that

the accelerating tension is I' 2 cos ply, where /3 is the angle the tangent at P to the

string makes with the axis of //.

640. Developable surfaces. When the surface on which the particle moves

is developable, we may sometimes fix the position of the particle by using the edge

as a curve of reference. Let be the arc of the edge measured from some fixed

point A to a point Q such that the tangent at Q passes through P. Let QP=u
measured positively in the same direction as . We then have

The form of the surface being given, the radius of curvature p of the edge at

Q is known as a function of . When U is given as a function of u aud s the

Lagrangian method supplies two equations to find the coordinates u and $.

A heavy particle moves on a developable surface whoee edge U a helix

with its axis vertical. Obtain two integrals by which
' and u' may always be

found in terms of u and t. Show also that if the particle is projected along a

tangent to the helix, it will continue to describe that tangent.

222
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Motion of a heavy particle on a surface of revolution.

550. To find the motion of a heavy particle on a surface of
revolution the axis of which is vertical.

Let the axis of z be the axis of the surface and let z be

measured upwards. The velocity v is then given by

where h is a constant depending on the initial conditions. Let

the plane z h be called the level of no velocity.

Let f be the distance of the particle P from the axis of figure,

and
<f>

the angle the plane zOP makes with the plane zOx. Then

where mA is the constant angular momentum and its value is

known when the initial values of f and d<f>/dt are given ;
Art. 492.

The velocity v at any point being given by (1), the angular mo-

mentum A must lie between zero and vj;. It is the former when
the particle is moving in the plane zOP and the latter when

moving horizontally. The particle therefore can occupy only
those points of the surface at which v% >A, i.e. those points at

which 2g (h z) %* > A 2
. If then we describe the cubic surface

(h-*)?=A*l9g ........................(3),

the f of the particle for any value of z must be greater than the

corresponding f of the cubic surface.

This cubic divides the given surface of revolution into zones,

separated by horizontal circles, and the particle can move only in

those zones which are more remote from the axis of figure than

the corresponding portions of the cubic. The zone actually moved

in is determined by the point of projection. The particle moves

round the axis of figure and must continue to ascend or to descend

until it arrives at a point at which the vertical velocity can be

zero, that is, until it reaches one of the boundaries of the zone.

If the particle is projected horizontally it is on the boundary
of two zones. It will move on that neighbouring zone which is

the more remote from the axis than the corresponding portion of

the cubic. If the cubic touch the surface of revolution, the

particle is situated on an evanescent zone and will then describe
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a horizontal circle. The path is stable or unstable according as

the neighbouring zones are less or more remote from the axis of

figure than the cubic surface.

551. Ex. A particle is projected horizontally with a velocity V at a point

irhose coordinates are , z. H'/// it rim 1 or fall?

If mR be the pressure on the particle, ^ the angle the radius of curvature

makes with the vertical, we see by resolving vertically, that the particle if inside

and ^ < $T will rise or fall according as R cos
\f/

is greater or less than g.

To find R we resolve along the normal to the surface. Since the particle is

moving along that principal section whose radius of curvature is the normal n,

we have T 2
/
= R - g cos ^, Art. 536. Since n sin ^=, we see that the particle will

rite, fall, or describe a h<>ri:ontnl circle according as V* is greater, lets, or equal to

g tan
\f/.

If *=/() be the equation of the surface of revolution, tan ^=<k/d.
To find the level to which the particle will rise or fall we use the cubic surface

described in Art. 550, the constants A and h being known from the equations

V$=A,V*=2g(h-z). The intermediate motion may be deduced from the equations

(1), (2) of the same article.

652. Ex. To find the pressure on the particle when in any position.

We use the formula given in Art. 536. The principal radii of curvature of the

surface are the radius of curvature p of the meridian and the normal n. The

velocity perpendicular to the meridian being va =d0/df, the velocity v
l along the

meridian is given by v*=v
l
* + vf. The formula

shows that

This problem has a special interest because we can use it to represent experi-

mentally the path of a particle under the action of a centre of force. If Q be the

projection of the particle on a horizontal plane, the motion of Q is the same as

that of a particle moving under the action of a central force whose magnitude is

;. If then a surface is so constructed that the generating curve satisfies the

differential equation R sin ^ = /*/*, where R has the value given above, the path of

Q should be a conic with a focus at the origin.

The experiment cannot be properly tried with a particle, for the surface must

then be very smooth. It is better to replace the particle by a small sphere whu-h

is made to roll on a rough surface, but in that case, the theory must be modified to

allow for the size of the particle. Nature, 1897.

653. Small oscillation. />. A hfartj particle P, describing a horizontal

on a surface of revolution, /* .//.////// aistnri required to find the

oscillations to a first approximat

The plane zOP may be reduced to rest if we apply to the particle a horizontal

acceleration Hd+ldt)*, Art. 495. Since ^rf^, acceleration is equal to

A*l?. Revolving along the meridian, we have

where f is the angle PGO winch the normal to the surface makes with the axis.
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Let the radius of the mean circle be N
l
P

l
= c and let the normal to the surface

at any point of its circumference make an angle P
l
G

lO=y with the vertical.

Since * may be taken to be the arc of the meridian between the particle and the

mean circle, we have

where p is the radius of curvature of the meridian at its intersection with the

mean circle.

Substituting, we find by Taylor's theorem ^=F-

gcosy
pp C*

The position of the circle of reference is as yet arbitrary except that the

deviation * must be small. Let it be so chosen that the mean value of s (taken for

any long time) is zero; we then have F=0. The mean circle and the angular

momentum mA are so related that ^ 2=c3
^tan7, while the oscillatory motion is

given by * =L sin (pt + J/) where L, M are the constants of integration.

To find the motion round the axis of figure we use the equation i?d<pldt = A;

dd> A A f, 2s

2A cos 7

where N is the constant of integration.

If we write w for the mean value of d<pjdt, we have A = c2w. We then find

co^ tan 7, P*= <** (
C-^-7+ 3 cos2

7^ +^-7
.

\ P / P

The time the particle takes to travel from the highest position to the lowest or the

reverse is ir/p.

554. The Paraboloid. Ex. 1. A smooth paraboloid is placed with its axis

vertical and vertex downwards, and its equation is |
2= 4az. A heavy particle is

projected horizontally with velocity V, the initial altitude being z= b, show that the

particle is again moving horizontally at an altitude z=V*!2g. Show also that

the pressure on the surface at any point of the path is inversely proportional to the

radius of curvature of the parabola.
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To prove the first, we notice that the angular momentum A = V where *= 4a6.

The cubic &(h-z) = A*l%g becomes za -/u + F*6/2<7= 0, one root of the quadratic

being 2 = 6, the other b' is given either by b + b' = h or &'=F8
/20. The second part

follows from Art. 552.

If the time T of passing from one limit to the other be required, we first

notice that

the limits being 6 and b'. This integral can be reduced to elliptic forms by putting

=
(6' + a) cos* 6.

2. A particle moves under the action of gravity on a smooth paraboloid

whose axis is vertical, vertex downwards and latus rectum 4a. If the particle be

projected along the surface in the horizontal plane through the focus with a

velocity J(2nag), prove that the initial radius of curvature p of the path, and the

angle 6 which the radius of curvature makes with the axis, are given by

(1 -n) tan0=l + n. [Math. T. 1871.]

J. A heavy particle moves on a paraboloid with its axis vertical, the

equation of the surface being x*Ia + y'*lp=4z. Show that the particle when moving

horizontally must lie on the quartic surface -~
( -^

- 4
J

(
-

za )
== A

-

where -
2
= ^ +

|j
+ 4, and B is the initial value of

-,
( + ^- + 2g\ . Show also

that when the paraboloid is a surface of revolution, the intersection reduces to two

horizontal planes and two coincident planes at the vertex.

555. The Conical Pendulum. To find the motion of a

y particle P on a smooth sphere*.

It will be convenient in this problem to take the origin of

coordinates at the centre of the sphere and to measure Oz

illy downwards. Let I be the length of the string OP and

B the angle it makes with Oz. Let
</>

be the angle the vertical

plane zOP makes with some fixed plane zOx. Let r be the

* The problem of the conical pendulum has been considered by Lagrange in

the second volume of his Mtcanique Analytique. He deduces equations equivalent
l

) and (8) of Art. 565 from his generalized equations, and notices that the

cubic has three real roots. He reduces the determination of ( and to integrals,

and makes approximations when the bounding planes are close together. He
refers also to a memoir of Clairaut in 1785. There is an elaborate memoir by
Tissot in LiouvilU't Journal, vol. xvn. 1853. He expresses r, *, * and the arc in

icgrals in terms of w. A long communication by Chailan may be found

in the Bulletin <U Soe. Math. <U France, 1889, vol. xvn. There is a brief discussion

of this problem in Oreenhill'g Application of Elliptic Fwutiont, 1899, Art. 906.
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distance of P from Oz. Let h be the altitude above of the

level of zero velocity. We now proceed as in Art. 550.

By the principles of angular momentum and vis viva,

Eliminating d<f>/dt and writing r = I sin 0,

Psm*0(^y=2g(h
+
lcos0)sm*0-^

......... (2).

Putting z I cos 6, this may also be written in the form

z*)-A* ............... (3).

To find the positions of the horizontal sections between which the

particle oscillates (Art. 550), we put dz/dt = Q. We thus have

the cubic

(h+*)(P-*)~A*/2g= Q .................. (4).

Since the initial value of z must make (dzjdt)^ positive, the

left-hand side of the cubic (4) is positive for some value of z

lying between z = 1. When z I the left-hand side is negative,

hence the cubic has two real roots lying between + I and separated

by the initial value of z. Let these roots be z a and z l>.

Lastly when z is very large and negative the left-hand side is

positive, the third root of the cubic is therefore negative and

numerically greater than I. Let this root be z = c. The particle

oscillates between the two horizontal planes defined by z = a, z b.

Since the cubic can be written in the form

z3 + h# - Vz + (A
2

lfy
-

l*h)
= 0,

we have the obvious relations

Conversely, when the depths a and b of the two boundaries of

the motion are given, the values of the other constants of the

motion, viz. c, h, and A, follow at once. We have

A* J
2 -a2

Z
2 -62

556. Ex. Prove (1) that one of the two horizontal planes bounding the

motion lies below the centre ; (2) that the plane equidistant from the two bounding

planes also lies below the centre; (3) that both the bounding planes lie below the

centre if 2ghl
2<A 2

; (4) if a length OC= c be measured upwards from the centre 0,
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the point C is not only above the top of the sphere, but above the level of zero

velocity.

To prove (1), we notice that if all the roots were negative, every coefficient of

the cubic (4) would be positive, which is not the case. To prove (2) ; since both

a and b are numerically less than J, it follows from the value of c that a -f 6 is

positive. (3) The two roots a and b will have the same or different signs according
as the left-hand side of the cubic when z = and z = l has the same or different

signs. The fourth result follows from the fact that c - h, i.e. a + b, is positive.

The first and third results follow also from Descartes' rule of signs; for since

all the roots of the cubic are real, there are as many positive roots as changes of

sign, and as many negative roots as continuations.

557. Ex. To find the tension of the string we produce the radius vector OP
outwards to a point Q so that PQ is half the length of the string. Let z' be the

depth of Q below the level of zero velocity. Prove that the tension mR is given

by lR= 2gz'. Thence show that the string can become slack only when Q crosses

the level of zero velocity. It may be noticed that the tension or pressure on a

sphere is independent of the angular momentum mA.

558. Ex. 1. .-1 particle P is projected horizontally icith a velocity V.

Determine whether it will rise or full, and find the position of the other boundary to

the motion.

Let the initial radius OP make an angle a with the vertical. Resolving along

the normal, we find that the initial tension mR is given by R=gco8a+V*ll.
The particle will rise or fall according as 11 cos a is > or < </, that is, according as

V9 cos a is > or < Ig sin3 a. If these are equal the particle describes a horizontal

See Art. 551.

To determine how far it will rise or fall, we notice that one root of the cubic in

Art. 555 is known, viz. z = I cos a ; the cubic may therefore be reduced to a quadratic.

But it is more easy to repeat the reasoning. We have by the principles of angular

momentum and vis viva

V"*/ X 1** /

Kliminating d^dt and putting zero for de/dt, the limiting values of 6 are

found from

Tutting r/20J=2n for brevity, we find

where the positive sign is given to the radical because COB $ must be lens than unity.

This value of cos 9 and cos = COB a determine the positions of the bounding planes
of the motion.

J. A heavy particle, constrained to move on the surface of a smooth

sphere of radios a, is projected horizontally with a velocity V from a point on the

surface whose depth below the centre is x. Prove that, when next moving hori-

zontally, the depth z' of the particle below the name point is given by

0.
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Ex. 3. In the centre of a hollow sphere resides a repulsive force. A heavy

particle is projected horizontally along the surface of the sphere from a point

distant 60 from the highest point with a velocity due to falling through the

diameter by its weight only. Prove that it will be again moving horizontally at a

point whose distance from the lowest point is tan" 1
^!. [Coll. Ex.]

E.r. 4. A particle is attached by a string to the top of a hemispherical dome,

and is projected horizontally along the interior surface, which is rough, with a

velocity just sufficient to prevent it from at once leaving the surface. Find the

velocity after describing a given arc, and show that it will always remain in contact

with the surface. [Math. Tripos, 1853.]

559. Ex. 1. Shoiv that the radius of curvature of the path and the inclina-

tion x of the osculating plane to the normal to the sphere are given by

where v is the velocity and mA the constant angular momentum.

We follow the method given in Art. 540. Let F be the component of accele-

ration along that tangent to the sphere which is perpendicular to the direction

of motion. Then
C 8

-^ = ^ ,
sin v=F. To find F, we notice that the accelera-

P l P

tion perpendicular to the meridian plane is zero, while that tangential is g sin 6.

Hence if the direction of motion makes an angle ^ with the meridian,

F = g sin 6 sin
\f/.

Since the components of velocity in and perpendicular to the meridian plane are

ad' and a sin 00', we have vcos\f/=ad
f

, v sin
\f/
= I sin

$<f>'. Choosing the latter

component to find ^ and remembering that I
2 sin2 0<f>'

= A, the values of cos xlp and

sin xlp are evident.

Ex. 2. A particle is projected with velocity V horizontally from a point on

the surface of a smooth sphere. Prove that the radius of curvature of its path is

IV*

iTvi p 9
'

2
where I is the radius of the sphere and a the inclination to the

vertical of the radius at the point. [Coll. Ex. 1881.]

Ex. 3. A particle is projected inside a smooth sphere of radius I with a velocity

Jlyl along a tangent to the horizontal equator, prove that at first the radius of

curvature is 21/^5. [Coll. Ex. 1897.]

56O. Ex. Prove that the projection of the path of the particle on a horizontal

plane is a central orbit described under a, force R sin =^ {2/t + 3 x/(Z
2 - r2)}, where

the radical changes sign when r=l.

Show also that if the two roots a and b of the cubic in Art. 555 have the same

signs, the central path is a spiral curve touching alternately two circles whose

radii are ^(^-a2
)
and /v/(^~ &2

)>
tne curve being always concave to the centre of

force. If a and 6 have opposite signs the central path after touching each bounding

circle, touches the circle r=l and then touches the other bounding circle. There

will be a point of inflexion only if R vanishes and changes sign.
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661. A' jr. // ice write $/ + * cos = <cos#, the general equation of motion of

a conical pendulum may be reduced to the form

- sin'
(^)

3

=
| (cos 30

- cos 3a),

by properly choosing the constants K and a.

Show that these values are

Find also the positions of the bounding planes when the constants K and a of the

motion are given.

562. Time of passage. The motion of the particle as it

travels from one boundary to the other may be found by an elliptic

integral.

We write the equation (3) of Art. 555 in the form

V(2) e= f dz

I J</(a-z)(z-b)(z + Cy
where the limits are z a and z = 6, and a > b. Putting z = a f ',

the integral takes a standard form which is reduced to an elliptic

integral by writing f = sin
yfr *J(a 6), i.e. we write

z a cos2 + b sin2

.

-
_

a - 6 J
2
4- ab

where *2 = -
, c =- r .

a + c a + 6

If the time of passage from one boundary to the other is required,

the limits are and TT.

If the two bounding planes are close together, K is small. By
expanding in powers of K and effecting the integrations we find

that the tiim from one boundary to the other is given by

If the two bounding planes are also close to the lowest point,

we put

We then find that the time of passage from one boundary to the

other is

"i
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the fourth powers of a and ft being neglected. This result is

given by Lagrange.

Let u = I , and K be the value of u when
Jo V(l-**sm3

Tjr)

^ =
^TT. Let t be the time of passage from the lower boundary

to the depth z defined by any value of
>/r,

and T the time from

one boundary to the other, then t/T= ujK.

663. Kx. 1. Prove that when half the time of passing from the lower to the

upper boundary has elapsed, the particle is above the mean level between the two

boundaries. Prove also that the depth of the particle is then (ic'a+ &)/(*' + 1), where

*=!-*. [Tissot.]

2. Prove that when a quarter of the time has elapsed, the depth z of the

particle is

564. The apsidal angle. To find tJie change in the value

of <f>
as Hie particle movesfrom one bounding plane to the other.

Eliminating dt between (1) and (3) of Art. 555 we find

[
dz"

J V(o -Al

where the limits of integration are z = b and z a, and a > b.

Putting a = m + //,,
b = m p, z = m + f so that m is the middle

value of z and
//,

the extreme deviation on each side of the middle,

we have

V(*7) , f

Al * Jv(M2 - + c + f ) [P
- (m +

where the limits are f = /u,
and

/u,.

565. When the bounding planes are close to each other, the

range p of the values of f is small. If also the planes are not

near the lowest point, the two last factors in the denominator

are not small for any value of f. We may therefore expand
these in powers of f and thus put the integral into the form

After calculating P and R, this gives

irl ( _
3 (3/

2 + 13w2

)m>a
)

4 (P -~m9

)"(P +^m2

)
2

'
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566. // both the bounding planes are near the lowe$t point of the sphere, I and
z are nearly equal, and the last factor in the denominator of

<f> (Art. 564), may be

so small that its changes in value are considerable fractions of itself. We write

the integral in the form

The two factors in the denominator of the second fraction are not small and these

may be expanded in powers of some small quantity properly chosen. We shall

make the expansion in powers of l-z i\.

Remembering the values of A and c found in Art. 555, we have

all these integrals are common forms. To find the first we put I - z = 1/w. We have

[_dz_ _ 1
f

du

JJ(*-W(*-*)(l-')~J(l-*)J(l-b)JJ(*-^(~fl'
where a and /3 are two constants which we need not calculate. For since the

limits of the first integral, viz. z= a, z = b, make the denominator vanish, the

limits of the other must be u=a, u =
/3. Putting u= (a + /3) + we see at once

that the value of that integral is T. Since 17=^-2 the values of the remaining

integrals have just been found. Hence

where we have written for c + 1 its value given in Art. 555.

If p, q be the radii of the circles which bound the oscillation, we have

'"- '--t
and in the small terms which contain the product pq as a factor, we can write

assl, b= l; hence (see Art. 562)

"
/' fl-4-

1 P*'*= A / \A T i rt M. /

r ( 3M )

2 16

The first of these results differs from that given by Lagrange. The correction

was first made by M. Bravais in a note to the Mecanique Analytique.

667. Ex. A simple spherical pendulum of length / is drawn out to the

horizontal position and is then projected horizontally with a velocity 2pl. Show

that, if 6 is the angle that the string makes with the vertical, and the azimuthal

angle of the vertical plane through the string, sin sin (<f>-pt) =
P

^/2 cos 0, where
fl

n is equal to Jgjl. [Math. Tripos, 1893.]
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Motion on an Ellipsoid.

568. Cartesian coordinates. To find the motion of a

particle of unit mass on an ellipsoid*.

Let X, F, Z be the components of the impressed forces in

the directions of the principal axes. Let R be the pressure on

the particle measured positively inwards. Since the direction

cosines of the normal are px/a?, &c., the equations of motion are

, , ...,

where accents denote differential coefficients with regard to the

time. We also have from the equation of the surface

Multiplying the dynamical equations (1) by #', y', /, adding and

integrating, we have

......(4);

where U is the work function and C is a constant. This is of

course the equation of vis viva.

Substituting from (1) in (3), we find

* The motion of a particle constrained to remain on an ellipsoid is discussed

by Liouville in his Journal, vol. xi. 1846. He uses elliptic coordinates and shows

that the variables can be separated when U (y?
-

v-)
=

I<\ (/*)
- F

>2 (/). There is also

a paper on the same subject by W. K. Westropp Boberts in the Proceedings of the

Mathematical Society, 1883. He also uses elliptic coordinates and especially treats

of the case in which the path is a line of curvature. The case in which the

particle is attracted to the centre by a force proportional to the distance is solved

in Cartesian coordinates by Painlev, Lemons sur ^integration des Equations diffe-

rentielU* de la Mfcanique, 1895. He also treats separately the limiting case of a

heavy particle moving on a paraboloid whose axis is vertical. There is a short

paper by T. Craig in the American Journal of Mathematics, vol. i. 1878. He
discusses the same problem as PainlevG, beginning with Cartesian coordinates, but

passing quickly to Elliptic coordinates. He shows that the path is a geodesic when

the central force is zero and the particle is acted on by what is equivalent to a

force tangential to the path and varying as/() + F(s) v where * is the arc described.

This result follows also from Art. 539.
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In an ellipsoid we have

i_*W2 l_ + ;? +
*

?++++ J? +++9 ......... ( ''

where D is the semi-diameter of the ellipsoid whose direction

cosines are (/, m, n). Also the radius of curvature of the normal

section whose tangent is parallel to D is p = D*jp. Taking D to

be parallel to the tangent to the path l = x'/v, m = y'/v, n = z'\v.

The equation (5) is therefore the Cartesian equivalent of

R=^-x
...........................(7),

where N is the inward normal component of the impressed force.

569. In certain cases we may find another integral. Differ-

entiating (5) and remembering (6), we have

d R . fafx"
'"

zz"\ d fXx Yy Zz- + + ^

Substituting for x", y", z" from (1) and using (6),

If then the forces acting on the particle are such that

ine have R = Ap* ...........................(10).

Snl Mi tilting in (5) or (7), we have the third integral which may
be written in either of the forms

If only the direction of motion is required, we eliminate v

between the equations (4) and (7). Remembering that p D*/pt

see that il. <lin< tion of motion at any point of the path
i- parallel to that semi diameter D whose length is given by

. +
*

......
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Supposing the condition (9) to be satisfied we notice that

when the initial velocity and direction of motion are such that

the equation (11) gives A =0, it follows by (10) that the pressure

R is zero throughout the motion. The particle is therefore free

and moves unconstrained by the ellipsoid. Conversely, if the

particle, when properly projected, can freely describe a curve on

the ellipsoid, the condition (9) is satisfied. If it can describe the

same curve when otherwise projected, the pressure varies as p
s
.

If the components X, F, Z do not satisfy the condition (9),

we may sometimes make them do so by adding to them the

components of an arbitrary normal force F and subtracting F
from the reaction R. The condition (9) then becomes

where F is an arbitrary function of x, y, z and p is a function of

x, y, z given by (6). The equation (10) then becomes R = F + Ap*.

It is only necessary that the condition (9) should hold for the

path of the particle, but as this is generally unknown, the con-

dition should be true for every arc on the ellipsoid.

67O. Ex. A particle is acted on by a centre of attractive force situated at the

centre of the ellipsoid, the force being KT. If D is the semi-diameter parallel to

the tangent to the path, prove that

These reduce to the ordinary formulae of central forces when 4=0.

Since X= -
KX, &c. the condition (9) is satisfied. The first of the results to be

proved then follows from (11), for N=Kp.

671. Ex. A particle P moves on the ellipsoid under the action of a force

y= -
*/y, whose direction is always parallel to the axis of y, and is projected from

any point P with a velocity v2 =K/y
2 in a direction perpendicular to the geodesic

joining P to an umbilicus. Prove that the path is a geodesic circle having the

umbilicus for centre, i.e. the geodesic distance of P from the umbilicus is constant*.

We see by substitution that the condition (9) is satisfied by this law of force.

The path is therefore given by

where, as before, D is the semi-diameter parallel to the tangent to the path. Since

the cosine of the angle the normal makes with the axis of y is pyjb*, we have

* This result is due to W. R. W. Roberts, who gives a proof by elliptic co-

ordinates in the Proceedings of the London Math. Soc. 1883.
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N= Kpjb'^y". The conditions of projection show that C= 0. Hence
-=&
= -

j>V + n
If p, a are the semi-axes of the diametral plane of P

If also D, D' are two semi-diameters at right angles of the same plane1111
1 _ _ __

</-7A- 2 6V
Substituting for p and r their Cartesian values

/. *2 *2\

V rf'^'
Using the equation to the surface, this becomes

c) _ AW) y-"

K
J

&4
'

Since the particle is projected perpendicularly to the geodesic denned by pD'= ac
t

the coefficient of y
a must be zero. It then follows that throughout the subsequent

motion pD'= ac, and the path cuts all the geodesies from the umbilicus at right

angles. These geodesies are therefore all of constant length.

Let a) be the angle which the geodesic joining the particle P to an umbilicus U
makes with the arc joining the umbilici. If ds be an arc of the orthogonal trajectory

of the geodesies, ds = Pdw
t where P=t//sinw (Art. 546). Since v2 = */y

2
, it follows

that the angular velocity w' of the geodesic radius vector is given by w'=^ sin w.

When the ellipsoid reduces to a disc lying in the plane xy, the geodesies become

straight lines and the geodesic circle reduces to a Euclidian circle having its centre

at // (Art. f>7<;). The theorem is then identical with one given by Newton, viz. that

a circle can be described under the action of a force Y=: -
*/j/

3
.

The motion of a particle in a geodesic circle under the action of a force, or tension,

.V the geodetic radius is given in Art. 548, where the result is deduced from

Gauss' coordinates.

672. I- .r. 1. A particle, moving on the ellipsoid, is acted on by a centre of

force situated at any given point K. If the force F is such that the condition (9)

is satisfied , prove that F=nrll*, where r and P are the distances of the particle

from :om the polar plane of K respectively. Thence show that, if the

initial conditions are such that the constant /1=0, the path is a oonio and the

velocity at any point is given by vi*=pN.

To prove this we put X=G(x-a), r=G(y-/3), #=G (*->), where G= *'/r

and (a, /9, y) are the coordinates ibstitating in the equation (9) and

remembering (2) Art. 568, we have an easy differential equation to find O. When
A =0, the particle moves freely on the ellipsoid under the action of a central force.

The path is a plane curve and is therefore a conic. The equation of vis viva fails

to give the velocity, but this is determined by (11) Art. 569, when the direction of

motion is known.

R. D. 23
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2. A particle moving on a prolate spheroid is acted on by a central force

tending to one focus and attracting according to the Newtonian law. Prove that

the integrals of the equations of motion are

where p is the perpendicular from the centre on the tangent plane, r the distance

from the focus, and A, B the constants of integration.

573. Ex. 1. A particle under the action of no external forces is projected

from an umbilicus of an ellipsoid, prove that the path is one of the geodesies

defined by pD = ac.

Ex. 2. A particle is projected with a velocity v along the surface of an

indefinitely thin ellipsoidal shell bounded by similar ellipsoids. Prove that when

it leaves the ellipsoid the perpendicular p from the centre on the tangent plane is

given by J/P3.R*=v2
p
2
a&c, where R is the radius vector parallel to the initial

direction of motion, P the perpendicular on the initial tangent plane, M the

attracting mass and a, 6, c the semi-axes of the ellipsoid.
*

[Math. Trip. I860.]

574. Ex. Let the forces be such that -
3 (Xd\+ Ydfj. + Zdv) is a perfect

differential, say dS, for all displacements on the ellipsoid, where X, p, v are the

direction cosines of the normal, i.e. \=pxja^, &c. Prove that

where B is the constant of integration.

Divide (8), Art. 569, by p2 and integrate by parts. The integrals of the equations

of motion are then obtained by using (6) and (7), remembering that p=Dz
fp.

575. In order to include in one form all the different cases ofparaboloids, cones,

and cylinders, it may be useful to state the results when the quadric on which the

particle moves is written in its most general form <j>(x, y, z) = 0.

Writing -j=#I
3 + tfV

2 + 0,
2

, where suffixes denote partial differential coefficients,

let the forces satisfy the condition

wi)-o .................. w.

for all displacements on the quadric. We then find that the pressure R=Ap*.
The three components x'

t y', z' of the velocity may be deduced from the equations

(2), i(*'
a+ ?/

2 + ;s'
2)=l/+C ............ (4),

op
+ <j>l,Y+<}>,Z= ............... (5),

where the numbers appended to the equations correspond to those in Arts. 568, &c.

676. Elliptic coordinates. Preliminary statement. The position of the

particle P in space is defined by the intersection of three quadrics con focal to a

given quadric. In the figure ABC, A'MM', A"NN' are respectively the ellipsoid,

hyperboloid of one sheet and that of two sheets; only that part of each being
drawn which lies in the positive octant. Let their major axes OA = X, OA'=n,
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OA"= v. Let a, ft, c be the three axes of any confocal. If aa -&a= fc
3
, a* -*=&*,

then OH=h, OK=k are the major axes of the focal conies.

The quantities X, /*, v are the elliptic coordinates of P; the first X is always
positive and greater than fc; the second /* is less than k and greater than h\ the

third v is less than h, and changes sign when the particle crosses the plane of yz.

The y axes of the quadrics are ^(X
2 -/*2

), J(fi?-h
z
), x'(i

a -fca); two of these are

real and the third is imaginary. These radicals are positive when the particle lies

in the positive octant, but the second or third vanishes and changes sign when the

particle crosses the plane of xz, according as it travels along PN or PM. Similar

remarks apply to the z axes.

The major axes of the three confocals which intersect in any point (.r, /, z) are

given by the cubic

XV+ /*V + ^X2= /i
2

(

XMv

From the third equation we infer by symmetry

where h and /; are the constants of the system. Clearing of fractions and arrang-

ing the cubic in descending powers of <i~, we see that the three roots X2
, /t

2
, *2 are

such that

(1).

..(2).

577. To prove tfmf the velocity v of a particle in elliptic

coordinates is given by

(X'-< \'
. Qi

a

h

(M

/Rv

We notice that the three quadrics confocal to a given quadric cut

each other at right angles at P, so that the square of the velocity

-2
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is the sum of the squares of the normal components of velocity.

It is therefore sufficient to prove that the first term is the square

of the component normal to the ellipsoid, the other terms follow-

ing by symmetry. Ifp is the perpendicular on the tangent plane

to the ellipsoid, the normal component is p'. Let (I, m, n) be the

direction cosines of p, then

p = X2P + (X
3 -

h?) m- + (X
2 -

te) n-

= X2 h?m* ten-
;

.*. pp'
= XX'.

If A A ft1
"6 the semi-diameters of the ellipsoid respectively

normal to the tangent planes at P to the two hyperboloids, we

know that

_X(V-A)(X'-*).

See also Salmon's Solid Geometry, Art. 410.

578. To find the motion of a particle on an ellipsoid in elliptic

coordinates. Let the ellipsoid on which the particle moves be

defined by a given value of X. The mass being taken as unity
the vis viva is determined by

- - '

This we write for brevity in the form

2T=M{PfjL'* + Qv'*} (5).

If we express the work function U in terms of (X, /u, v), we
have (since X is constant) the Lagrangian function T + U expressed
in terms of two independent coordinates /*, v.

Comparing (5) with Liouville's form, Art. 522, we may obviously
solve the Lagrangian equations by proceeding as in that article.

The results are that when the forces are such that the work
function takes the form

(fS-v*)U = Fl (fjL) + F,(v) (A),

the integrals are
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There is also the equation of vis viva

(C).

Dividing one of the equations (B) by the other, and remembering
that \ is constant, the equation of the path takes the forms

*- - { ''

in which the variables are separated.

579. A'.r. 1. Let v
1
and r be the components of the velocity of the particle

in the directions of the lines of curvature defined by /*= constant and v= constant

respectively. Prove that

\ Ft(,)-C*-A 1 F^rf +W+A
f-r>

' 2"'- Mi-r

Prove also that the pressure R on the particle is given by

where p is the perpendicular on the tangent plane and N the normal impressed
force. The value of p in elliptic coordinates is given in Art. 577. See Art. 568.

2. Supposing that the equation (D) of Art. 578 is written in the form

Pd/jL=Qdv in which the variables are separated, show that the time

t= jP^dfji
- fa* (h. [Liouville, XL]

The equations (B) become

(M
2 - vz

) PdfjL= dt t (n
2 -

V-) Qdv= dt.

Multiplying these by /i
2

, v- respectively and subtracting we obtain the result.

58O. Ta translate the elliptic expressions into Cartesian geometry we use the

equations (1) and (2) of Art. 576. Let the normals at the four umbilici Ult 173 , &c.

intersect the major axis in the two points Elt E, which of course are equally

distant from the centre 0. We easily find that

The equations (1) Art. 576 give

hk*

Let r,, r, be the distances of the particle from the points Elt J5j, and let m
be the distance of

,
from the umbilicus r', ; then

(M-^r.'-m', (M + ,)=ra
'-, ....... (2).

these M, v may be found in terms of .r, y, z and the constant X.

581. / .r . Show that the equation U (^ -
)
= F

l (/t) + F, (*) is equivalent to

j^
3 0,P:> ,,,), where /

>
1
= v/(rl -m), ^JW-m*).

We have > - r)-0, and by (2) Art. 580

d d d d d

^ +
d7;' K-fc-d^'

Tlu- result follows at once.
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582. The condition (A) of Art. 578.

)
.............................. (A),

con be tatitjied by several law* of force.

1 Let the force tend to the centre of the ellipsoid and vary as the distance.

Representing the force by Hr, we have, by (1) Art. 576,

Substituting these in the equations (B), the motion is known.

2. Let the direction of the force be parallel to the axis of x, and A'= -
2H/ar

3
.

Then
H HhW

TT

3. Let the work function U--,, ,- 2 \
wnere 7%i

is the distance of the
v vi

~ m )

particle from the point El ,
Art. 580. We then have

To find the force we notice that since rff//dX=0, the direction of the force is tan-

gential to the ellipsoid. Also

. dU_ H ( hk /hkx .--
with similar expressions for Y and Z. Now the equation to the ellipsoid being

X= constant, the last term of each of the three expressions represents the compo-
nent of a normal force. This normal force has no effect on the motion. Taking

only the remaining terms we see that X, Y, Z are the components of a central force

tending to the point E whose magnitude is
|

. When the ellipsoid is reduced

to a disc, X= k (Art. 576), and m=0 (Art. 580). The point El
becomes a focus and

the law of force is the inverse square.

683. Kx. 1. Show that a particle can describe the line of curvature denned

by M=MO under the action of the central force - l

5 tending to the point Er
(V-*V (2 1 )

Show also that the velocity at any point is then given by vz=H \ -\ .

\(rf
- in2)* ^o)

We notice that when the ellipsoid reduces to a plane, w=0, and this becomes the

common expression for the velocity under the action of a central force varying as

the inverse square.

Referring to the general expressions marked (A) and (B) in Art. 578, we see that

the particle will describe the line of curvature if both // = and /*" = when A<=/V
This will be the case if we choose the constants C and A so that

F
l^ + CfS + A = (M -^ (M),

where #(/*) is some function of /a. Supposing this done, we have, when /u
=

/x ,

(Art. 579) ^
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In the special case proposed C7=H/ (/*-*). We have therefore to make
CM2+ //M + .4 = (M

-
Mo)

2 C. This gives - 20^ =H, ^ = CX>. Also F
a (i>)

= Jfr.

-" fl

Ex. 2. A particle is constrained to move on the surface y = xt&nnz. By
putting x = n cos nz, y=p sin nz, we have

Hence show that when the forces are such that

the Lagrangian equations can be integrated. The path is given by

[Li Ile - 1846.]

If the particle is acted on by a force tending directly from the axis of z and

varying as the distance from that axis, find the components of velocity along the

lines of curvature.

584. Spheroids. When the ellipsoid on which the particle moves becomes a

spheroid either prolate or oblate, the formulae (A) and (B) of Art. 578 require some

slight modifications.

Let (X, 6, c), (M, &', </), (*, 6", c") be the semi-axes of the three quadrics which

intersect in P; then also a= \, a' = /*, a" =.v.

In a prolate spheroid b = c, h = k, and the focal conies become coincident with

CU

Prolate. Oblate.

Oil and HA. The axes of the hyperboloid of one sheet are n=h, 6'= 0, c'= 0; it

therefore reduces to the two planes t/
2
///

2 + 22/c'
2= 0, the ratio b'/c' being indeter-

minate. Art. 676.

In an oblate spheroid \ = b, / = 0; one focal conic becomes coincident with OC,
u In!, the other is a circle of radius k. The axes of the hyperboloid of two sheets

are r=0, &"= 0, c"*= -
ft'; it therefore reduces to the two planes *P/

f + y
f
/*"*=()*

the limiting ratio ?//>" being indeterminate.

In the figure the positions of the focal conies j\ut before they assume their

limiting positions are represented by the dotted lines, while PM or PN represents

one of the planes assumed by the hyperboloid.

Before taking the limits of the equations (A) and (B) we shall make a change of

variables. In the prolate spheroid we replace M by a new variable 0, such that

. f -
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Thus tan varies between the limits and oo as /* varies between k and h. Since

6*=/-*, c'3=^2
-Jfc

2
, andy^ + z^rrO, it is clear that is ultimately the angle

the plane PM makes with the plane AB. Putting /*
=

fc, the formula? (A) and (B)

become

In the oblate spheroid, we replace v by the variable where

i/
2 - /i

a v'2

tan20= --^, /. i/=fccos0, .-. -0'
2=

y2^i

thus tan varies between and oo as v varies between h and 0. Also since

ar
2
/y

a+ t/
2
/6"

2 =0, is ultimately the angle the plane PM makes with the plane AC.

Putting v= 0, h=Q, the limiting forms of the equations (A), (B) are



CHAPTER VIII.

SOME SPECIAL PROBLEMS.

Motion under two centres of force.

585. To find the motion of a particle of unit mass in one

'.> under the action of two centres offorce*.

Let the position of a point P be defined as the intersection of

two confocal conies, the foci being H1 , //,, and let OHl
= h. Let

the semi-major axes be OA=p t
OA'=v: the semi-minor axes

are therefore

Since + -r^-,= 1, we have
fji- fj? h?

A44-(^ + ^ + /t) AA + ^aJa = ............... (1).

The relations between the elliptic coordinates /JL, v of any point

P and the Cartesian coordinates x
% y are therefore

-?. ,-. --.
where r is the distance from the centre. We also have ra

=
/A + 1/,

r,
=

/A
- v

t where r, , ra are the distances of P from the foci.

* Euler was the first who attacked the problem of the motion of a particle in

one plane about two fixed centres of force, Mtmoiret de VAcadfmie dt Berlin, 1760.

Lagrange, in the Mtcaniqut Annl>jtiu< -, page 98, begins by excusing himself for

attempting a problem which has nothing corresponding to it in the system of the

world, where all the centres of force are in motion. He supposes the motion to

be in three dimensions and obtains a solution where the forces are a/r' + a-yr and

pli* + 1yr. Legendre in his Function* clliptiqut* pointed out that the variables

used by Euler were really elliptic coordinates, and Serret remarks that this is the

first time these coordinates were used. Jacob! took this problem as an example
of his principle of the least multi] . xxvn. and xxix. Liouvillo in 1846

and 1847 gives two methods of solution, the first by Lagrange's equations and the

second by the Hamiltonian equations. Serret extends Liouville's first method to

three dimensions, Liouvillt't Journal, xm. 1848, and gives a history of the problem.

Liouville in the same volume gives a further communication on the subject.
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Proceeding as in Art. 577, the velocity v of the particle ex-

pressed in elliptic coordinates is

where, the accent represents d/dt. Comparing this with Liouville's

form

in Art. 522, we may obviously solve the Lagrangian equations by

proceeding as in that Article. The results are that when the

work function has the form

df-^U'KW + FiW .................. (3),

we have the two integrals

.(4).

There is also the equation of vis viva which may be deduced

from these by simple addition, viz.

........................... (5).

586. Let the central forces tending to the foci be respectively

Jrf and HJrf. We then have

The integrals (4) then become

fy- = K& + (V +

where K^ H^H^K^ H^H^. To find the path we eliminate t,

(dtf -(dv? 2 (dt?

{f^-h^(C^ +Klf
i+ A) (v*-h?)(-W+ K,y-A) (n*-v*)*

"

The initial values of ft, ft', v, v being given, the equations (7)

determine the constants A, C. Another constant is introduced

by the integration of (8) which is also determined by the initial

values of
/it,

v. A fourth constant makes its appearance when the

time is found in terms of either /* or v.
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587. E.r. 1. Show that the particle will describe the ellipse defined by

M = M,,> if the particle is projected along the tangent at any point with a velocity r

given by

Mo

To prove this we notice that if the particle describe the ellipse, n is constant

throughout the motion, and the values of /*', p." given by (7) must be zero. The

ri^ht-haml side of that equation must take the form C(/i-^,,)
2

, and therefore

- 2C/ =Jir
1 . Substituting for C in the equation of vis viva (5) the result follows

at once. See also Art. 274.

A\r. 2. A particle is projected so that both the constants .-1 and C are zero.

Show that the velocity is that due to an infinite distance and that the path is

given by
d$

where n = h sec3 <f>,
v = h cos2 6 and B is a constant.

Ex. 3. A particle moves under the action of two equal centres of force, one

attracting and the other repelling like the poles of a magnet. The particle is

projected with a velocity due to an infinite distance. Show that if the direction

of projection be properly chosen the particle will oscillate in a semi-ellipse, the two

poles being the foci. If otherwise projected the path is given by

where v = h cos2 + /3 sin
2
0, 2* = 1 -

pjh and A = 2H/3.

Ex. 4. Prove that the lemniscate, rr'=ca
,
can be described under the action

of two centres of force each H/r
3
tending to the foci, provided the velocity at the

node is ?
A/^p- S** Art - WO, Ex - 1L

588. To find the motion of a particle of unit mass in three

iJi //tensions under the action of two centres of force attracting

;/ to the Newtonian Inn*.

Let the two centres of force Hlt H* t
be situated in the a\i-

of z and let the origin O bisect the distance HJI^. Let ^ be the

le the plane zOP makes with zQx and let p be the distance

of P from Oz.

Since the impressed forces have no moment about Oz, we have

by the pi >f angular nmm, -mum (Art. 492),

We now adopt the method explained in Art. 495. We treat the

particle as if it were moving in a fixed plane zOP under the

intlut IH-O of the two centres of force togcth. r with an additional

t'..ive
p<t>'*

= Bi

/ff tending tn.n, th axis <>f .. This problem has

been partly solved in Art. 585; it ..nly remains to consider the
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effect of the additional force. This force adds the term - &/2p
z

to the work function U.

Taking Hlt H9 as the foci of a system of confocal conies, let

fi, v be the elliptic coordinates of P. As before, we suppose that

the work function U of the impressed forces satisfies the condition

(fP-^U-FM + FtW .................. (2).

Since p is the ordinate of the conies [Art. 585],_h?) y?-v>_ h* h*

-/i' p
2

"y*
2-^ v*-te"

The term to be added to U has therefore the same form as those

already existing in U and shown in (2). To obtain the integrals

we have merely to add the terms given in (3), (after multiplication

by
- J52

) to the functions Flt F2 .

In this way, we find the integrals

"

When the central forces follow the Newtonian law,

f/ = J+-s

; .:(rt-*)U-K& + K*,
TI 7*2

where K^ = JET, 4-H2 , K^H^-H^ as in Art. 586. We therefore

write in the solution (4), Fl (/*)
=KM F^ (v)

= K2v.

If the particle is acted on by a third centre of force situated

at the origin and attracting as the distance, we add to the

expression for U the term - %H3r*
= - $HS (^ + v- - h2

).
The

effect of this is to increase the functions F1} F.2 by ^H3 (/A
4

/>>-),

and ^H3 (v* /*V) respectively.

In the same way if the particle is also acted on by a force

tending directly from the axis of 2 and equal to ic/p
3
,
or a force

parallel to s and equal to K/Z*, the effect is merely to give

additional terms to the functions Fl and Fz . See Art. 582.

689. Ex. A particle P moves under the attraction of two centres of force at

A and B. If the angles PAB, PBA be respectively lt 2 ,
the distances AP,

BP be rlt r2 , and the accelerations be fj-il^
2

, fJ^lr2
2
, prove that

where AB= a, C is a constant and the motion is in one plane.
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If the motion is in three dimensions, prove that

where h is the areal description round the line of centres. [Coll. Ex. 1895.]

On Brachistochrones.

5 GO. Preliminary Statement. Let a particle P, projected from a point A at

a time f with a velocity r
, move along a smooth fixed wire under the influence

of forces whose potential U is a given function of the coordinates of P, and

let the particle arrive at a point J> at a time t
}
with a velocity v

l
. Let us suppose

that the circumstances of the motion are slightly varied. Let a particle start

from a neighbouring point A' at a time t + St with a velocity r,, + 5r . Let it be

constrained by a smooth wire to describe an arbitrary path nearly coincident with

the former under forces whose potential is the same function of the coordinates as

before, and let it arrive at a point !>' near the point B at a time t
l
+ 3f

j
with velocity

i'i + 8v
j

.

According to the same notation, if x, y, z\ x\ y', z'
y are the coordinates

and resolved velocities at any point P of the first path at the time t, then

x + dx, &c.; x' + 8x', &c., are the coordinates and resolved velocities at any point

P' of the varied path occupied by the particle at the time t + St.

Let P, Q be any two points on the two paths simultaneously occupied at the

time t. Let the coordinates of Q be x + Aar, y + At/, Ac. Then S.c exceeds Ax by
the space described in the time 5f,

.'. A* = Sx - (x' + dx') $t = Sx- x'dt

when quantities of the second order are neglected.

We may regard 5.r, 5y, 5;, as any indefinitely small arbitrary functions of

:, limited only by the geometrical conditions of the problem.

We here consider two independent changes of the coordinates. There are

(1) the differentials dx, dy, dz when the particle travels along the undisturbed

path, and (2) the variations Sx, Sij, Sz when the particle is displaced to some

neighbouring path. It follows from the independence of these two displacements
that dtx = 6dx.

591. The Brachistochrone. A particle of unit mass moves

I .s-o tin it its velocity v at any point is given

\v*=sU+Ct where U is a known fm/'i/<>n of the coordinates, the

xtant C being also knov', posing the initial and final

positions A, B to lie on two given surfaces, it is required to find
the /><tt/ must be constrain^! to take tlutt the time of
transit may i' < //<*.

An account of the early history of this problem is given in Ball's Short

'ry of Mathematic*. Passing to later times, the theorem v = Ap for a central

force is given by Euler, 3/ ore is a memoir by Roger in

* v ille'* Journal, vol. xm. 1848; he discusses the braohistoohrone on a surface
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The time t of transit being t=fds/v, we have to make this

integral a minimum. Since a variation is only a kind of dif-

ferential, we follow the rules of the differential calculus and make

the first variation of t equal to zero. Let the curve AB be varied

into a neighbouring curve A'B', each element being varied into a

corresponding element. Since the number of elements is not

altered, the variation of the integral is the integral of the variation.

Writing <f>
for l/v to avoid fractions, we have

Bt =/3 (<l>ds)=S(<t>dSs + dsS<t>).

Since (ds)*
= (dx)

z + (dy)
z + (dz)\ we have

dsSds = dxSdx + dySdy + dzBdz
;

Integrating the first three terms by parts,

where the part outside the sign of integration is to be taken

between the limits A to B.

We notice that in this variation, C has not been varied. If C were different

for the different trajectories, we should have

.

dy
" dz dC

There would then be an additional term inside the integral. It follows that vz is

regarded as the same function of x, y, z for all the trajectories.

Since the time t is to be a minimum for all variations con-

sistent with the given conditions, it must be a minimum when

the ends A, B are fixed (Art. 144). We then have at these points

Bx = 0, By = 0, Bz = 0, and the part outside the integral vanishes.

The required curve must therefore be such that the integral

/oro whatever small values the arbitrary functions Bx
t By, Sz

may have. It is proved in the calculus of variations (and is

and generalises Euler's theorem that the normal force is equal to the centrifugal

force. Jellett in his Calculus of Variations, 1850, proves these theorems and

deduces from the principle of least action that the brachistochrone becomes a free

path when v = kzjv
f

. Tait has applied Hamilton's characteristic function to the

problem in the Edinburgh Transactions, vol. xxiv. 1865, and deduces from a more

general theorem the above relation to free motion. Townsend in the Quarterly

Journal, vol. xrv. 1877, obtains the relation v = v' in free motion, and gives

numerous examples. There are also some theorems by Larmor in the Proceedings

of the London Mathematical Society, 1884.
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perhaps evident) that the coefficients of Bx, By, Bz must separately

vanish. We therefore have, writing l/v for
</>,

*L (\\ - <L (- ^\ (-}- (- dy\ iL(\\~A (-
dx \v)

~
ds \v ds)

'

dy\v)~ds\vds)' dz\vJ~ds\vds
These are the differential equations of the brachistochrone.

These three equations really amount to only two, for if we multiply them by

<t>djcj(h, <pdyjde, &c. and add the products, we find

which is an evident identity.

592. Supposing these differential equations to have been

solved, it remains to determine the constants of integration. To
effect this we resume the expression for Bt t

now reduced to the

part outside the integral sign. We have

which is to be taken between the limits A to B. Since we may
van' the ends A,B of the curve, one at a time, along the bounding
>urface (Art. 144), this expression for Bt must be zero at each end.

The variations Bx, By, Bz are proportional to the direction cosines

of the displacement of the end, and dx/ds, &c. are the direction

cosines of the tangent to the brachistochrone. This equation
therefore implies that the brachistochrone meets the bvnndiicj

''ice at ri'jlit n<jles.

expression for Bt may be put into a geometrical form

which is sometimes useful. Let Barlt 8<j2 be the displacements
i 1 A

', BR of the two ends. Let 6l ,
B9 be the angles these dis-

placements respectively make with the tangents at A and B to

the brachistochrone AB. Let vlt va be the velocities at A, B.

Then

g __ Sgg COS 0, Sg^C'

V, V,

593. In some problems the velocity v is a given function of

tin- coordinates of one or both ends of the curve. This does not

affect the differential equations, for in these the coordinates of the

ends, when fixed, are merely constants.

The case is different when we vary the ends in that portion

<>t' the expression for Bt which is outside th- integral sign. \\ ,
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must add to that expression the terms of
S<f>

due to the variation

of the ends. If a-0) y ,
z

; x\,y\, z\, are the coordinates of the

ends A, B, we then have

where the &c. indicate terms with y and z respectively written

for x. The conditions at the ends are then found by equating
this expression to zero.

694. The equations of the brachistochrone are found by equating the first

variation of the time to zero. To determine whether this curve makes the time a

maximum, a minimum, or neither, it is necessary to examine the terms of the

second order. For this we refer the reader to treatises on the calculus of variations.

lu most cases there is obviously some one path for which the time is a minimum,
and if our equations lead to but one path, that path must be a true brachistochrone.

In other cases we can use Jacobi's rule. Let AB be the curve from A to B given

by the calculus of variations. Let a second curve of the same kind but with varied

constants be drawn through the initial point A and make an indefinitely small

angle at A, with the curve AB. If they again intersect in some point C, the curve

satisfies the conditions for a true minimum only if C be beyond B.

595. Theorem I. When the only force on the particle acts

(like gravity) in a vertical direction, (j>
=

l/v is a function of z

only, and the first two differential equations of the curve (Art.

591) admit of an immediate integration. Remembering that

dx/ds = cos a, dy/ds = cos ft, it follows that the brachistochronefor
a vertical force is such a curve that at every point v = acos a,

v = b cos ft, where a, ft are the angles the tangent makes with any
two fhorizontal straight lines, and a, b are the two constants of

integration. By equating the two values of v and integrating,

we see that the brachistochrone is a plane curve.

596. Theorem II. Let X, Y, Z be the components of the

impressed forces, the mass being unity; then since ^v* = U + C,

we have X-^dv^ldx, &c. The differential equations of the

brachistochrone therefore become

Let \, /JL,
v be the direction cosines of the binormal, then since

the binormal is perpendicular both to the tangent and the radius

of curvature

dx dy dz d
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Using the values of X, Y, Z given in (1) we find

\X + fj,Y+vZ=0 ........................(3),

the resultant force is therefore perpendicular to the binomial, and
''.* in the osculating plane.

Let ^=-J> m ~ -; &c - be the direction cosines of the

positive direction of the radius of curvature, then

IX + mY+nZ l/2 + m2 + ?i
3 d /1\ Ldx2 + ?i
3 d /1\ Ldx
+:r )-Uj-
ds\vj (

dsr v p

Since the radius of curvature is at right angles to the tangent,
the last term is zero, and we have

Lr+r+*--- ..................... (4).

This equation proves that in any brachistochrone the component

of the impressed forces along the radius of curvature is equal to

minus the component of the effective forces in the same direction.

597. To find the pressure on the constraining curve. Let Flt

F., be the components of the impressed forces in the directions

of the radius of curvature and binomial. Let Rlt Rt be the

-m < a . .11 the particle in the same directions. Then by Art. 526

1 a brachistochrone F9
= and Fl

=
v*/p, hence R^ = and

598. To find a dynamical // itnm of Theorem II.

\\ .- see by referring to the equations of motion in Art. 597,

that if we changed the sign of Flt the component of pressure Rv

would be zero, ami th< path would then be free. We also suppose
the tangential component of force to remain unchanged so that

the velocity is not altered. It follows iinim-.liately, that a

brachistochrone and a free path may be changed, either into the

other, by making the resultant force at each point act at the same

angle to the same direction of icnt as before, but on the other

side, and still in (he osculating plane. In this comparison the

velocities nf tin- partirlr. win n tiro and when constrained, are

at the same point of the path, i.e. v'**v.

u. ... 24



370 ON BRACHISTOCHRONES. [CHAP. VIII.

599. Theorem III. The equations of motion of a particle

P constrained to describe the brachistochrone are

d ld* d
(l\ d(ldsl\_d_(l\

cU/' su*; <w*
If we now write w' = k? or, which is the same thing vds = k*dt

f

,

where v
f

ds/dt', the first of these equations becomes

(
' \ =

ds\ ds) dx*

Now v'dx/ds being the x component of the velocity, is equal to

dxjdt'. Multiplying by v' or dsjdt', the equations take the form

_ jc>
dt''

1 2 dx
'

dt'
z 2 dy

'

These are the equations of motion of a free particle P' moving

along the same path with a velocity v' and occupying the position

x, y, z at the time t'. It follows that the brachistochrone from point

to point in a field U + C is the same as the path of a free particle

k* 1 kz

in a field U' + C', provided U' + C' = -^ ~
;

i.e. v = .

T C/ ~T~ O 1)

To understand better the relation between the two fields of

force we notice that if X, X' be the components of force in any
the same direction at the same point,

y dU Y ,
dU' Y, Y (kA. = -j , A = =

, . . A = A
dx dx \v

We also notice that dt'/dt
=

v/v'.

600. This theorem is useful, as it enables us to apply to a brachistochrone

the dynamical rules we have already studied for free motion. It also enables us

to express at once the fundamental differential equations in polar or other co-

ordinates.

The first theorem (Art. 595) follows at once from the third, for when the force

is vertical we see by resolving horizontally that v' cos a is constant. Since v'= k2lv,

this gives the result.

To deduce the second theorem, we notice that in the free motion v'zjp=F1

'

t

where F/ is the component of force along the radius of curvature. Using the

theorems t/= k*jv t X'= - X (kjv)*, (where X is here FJ this becomes vz
jp= - F

l
.

601. Ex. 1. To find the brachistochrone from one given curve to another,

the acting force being gravity and the level of no velocity given. The motion is

supposed to be in a vertical plane.

Let the axis of x be at the level of no velocity and let y be measured down-

wards; then v*= 2gy. By Art. 595 the curve is such that v = acosa. This gives

y = 26 cos2 a, where b is an undetermined constant. This is the well-known
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equation of a cycloid, having its cusps at the level of no velocity. The radius of

the generating circle and the position of the cusps on the axis are determined by
the conditions that the cycloid cuts each of the bounding curves at right angles ;

Art. 592.

'2. If in the last example the bounding curves are two straight lines

which intersect the axis of no velocity in the points L, L'\ and make angles /3, /S'

with the horizon, prove that the diameter 26 of the generating circle is -LL'/(/3
-

/3')

and the distance of the cusp from L is 2fy3. Explain the results when the lines

are parallel.

602. Ex. Show by using Jacobi's rule that the cycloid from one given point

A to another I? is a real minimum, the level of zero velocity being given (Art. 594).

The cycloid found by the calculus of variations passes through A and B and

there is no cusp between these points. Describe a neighbouring cycloid passing

through A and having its cusps on the same horizontal line, the radii of the

generating circles being b and b + db. Since the base of a cycloid from cusp to

cusp is 2r&, it is easy to prove that the next intersection of the two curves lies in

a vertical which passes between the two next cusps. The cycloids therefore

cannot again intersect between A and B and the time from A to B must be a

minimum. See also Art. 654.

603. Ex. Find the brachistochrone from one given curve to another when
the acting force is gravity and the particle starts from rest at the upper curve.

Fixing the ends, it follows, from Art. 601, that the brachistochrone is a cycloid

haring a cusp on the higher curve. To determine the constants of the curve, we
examine the part of dt due to the variation of the two ends. Let :TO , y ; x

lt //,
be

the coordinates of the upper and lower ends, then v*=2g(y-y ). By Art 593

we have

\ds
v
-^ds vy^"J(

>Jdy

where = Ijv and the expression is taken between limits. Now in our problem

dy
~
dy

~
dsy ds

by using the differential equation of the brachistochrone in Art. 591. We there-

fore have

Remembering that
<f>
= ljv and t?= acosa, this takes the form

[ax+ tan aty]J- 8y [tan a]J=0.

When we fix the lower end, we have, since y is measured downwards, 5.r,
= 0,

i/,=0. Hence
-
(8r + tan a 8y )

-
ty (tan o,

- tan oo) = o (1).

When we fix the upper end, &r = 0, ty = 0;

/. ax, + tan a, ay, =

The last of these two equations proves that the brachistochrone cuts the lower

,nrr, at r ;
:

t angles, while the first, giving 3y /3.r
=

3//,/a.r,, proves that the

>nt* to the bounding curves at the points where the brachistochrone meets them

are parallel.

242
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6O4. Ex. 1. A particle falls from rest at a fixed point A to a fixed point C,

passing through another point B ;
find the entire path when the time of motion is

a minimn, (1) supposing B to be a fixed point, (2) supposing B constrained to lie

on a given curve. [Math. Tripos, 1806.]

The paths from A to B, B to C are cycloids having their cusps on a level with

the point A. It is supposed that there is no impact at B in passing from one

cycloid to the next. The particle describes a small arc of a curve of great curva-

ture and moves off along the next cycloid without loss of velocity.

We have yet to find the position of B when it is only known to lie on a given

curve. Taking the origin at A, and the axis of z vertically downwards, we have

v2 =20.r. The time is given by

where accents refer to the lower cycloid.

by Art. 592. Let (o, /3, 7), (a', /3', y'), (0, <f>, ^) be the direction angles of the

tangents at B to the two cycloids and to the constraining curve. Then remember-

ing that A and C are fixed points and that B is varied on the curve, we have

(cos a cos + cos /3 cos # + cos y cos ^)
-

(cos a' cos 6 + cos /3'
cos

<f> + cos y' cos ^) = 0.

It follows that the tangent to the locus of B makes equal angles with the tangents to

the two cycloids AB, BC. This determines the point B.

Ex. 2. Find the curve of quickest descent from a fixed point A to another C,

supposing that a screen is interposed between A and C having a given finite

aperture through which the path must pass. [So long as the curve AC can be

arbitrarily varied the minimum curve is found by Arts. 591, 601. Hence if the

single cycloid A C does not pass through the aperture, the minimum curve must pass

through a point B on the boundary of the aperture. The curve then consists of two

cycloids AB, BC, and the position of B is found by Ex. l.j [Todhunter.j

6O6. Ex. 1. If the brachistochrone is a parabola when the force is parallel to

the axis, prove that the magnitude of the force is inversely proportional to the

square of the distance from the directrix. [This follows from the equation
v-a cos a.] Prove also that the time of describing any arc PQ varies as the area

contained by the focal radii, SP, SQ. [For cos a varies as 1/p, therefore dt varies

as pds.] See also Art. 649.

Ex. 2. A point moves in a plane with a velocity always proportional to the

curvature of the path, prove that the brachistochrone of continuous curvature

between any two given points is a complete cycloid. [Math. Tripos, 1875.]

We here have jpds=j<f>dx a minimum, where = (l + 2/'
2
)

2
/y". The curve can

be immediately found by using two rules in the calculus of variations. First,

we have J0dx=4>8x + (Yl

-
Y,/) w + y,,

' + /(- Y/ + y,,") u dx,

where 7,, Y
llt

are the partial differential coefficients of
<f>

with regard to y', y" \

w= 5y-y'&x, and the part outside the integral sign is to be taken between limits.

Also accents denote differentiation with regard to x. The extreme points being

given, fcc=0, Sy= at each end. Hence exactly as in Art. 591, 592, the

differential equation of the curve is Y/-Yit

" = Q and Y
tl
= Q at each end. This

gives Yt -Y,/= A.
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Secondly, the calculus of variations gives also the integral

*= (r,-lV)y' + r,y + B.

Eliminating }',/ between our two first integrals we find <f>=Ay' + Yti y" + B,

which contains two arbitrary constants A, B. Substituting for and F,,, this

leadsto

Taking the straight line Ay + Bx = as an axis of , this is equivalent to

/>
= C sin ^ where sin ^=rfi;/d* and C is a constant. This is the known equation of

a cycloid. The condition Y
tl
=0 at each end gives y" infinite and therefore p0.

The cycloid is therefore complete.

Ex. 3. Prove that the differential equation of the brachistochrone from rest

at one given point A to another point B, when the length of the curve is also given, is

IMrf. Tract,.]

To make jdsjv a minimum subject to the condition that jds is a given quantity
we use a rule supplied by the calculus of Variations. We make j(\/v + l)ds a

minimum without regard to the given condition and finally determine the constant

X so that the arc has the given length.

6O6. Central force. Ex. 1. Prove that the brachistochrone for a central

force F is given by v = Ap, where %v*=fFdr and p is the perpendicular from the

centre of force on the tangent. The mass is unity, as is usual in these problems.

The brachistochrone is a free path for a particle moving about the same centre

but with such a law of force that the velocity v'=k*jv. Since v'p^h by Art. 306,

When F=fiu* t
and the velocity is equal to that from infinity, the differential

equation v = Ap can be integrated exactly as in Arts. 360, 363.

2. Prove that the same path will be a brachistochrone for F=nun and

a free path for Ft= n'u*
f
if n + n'=2, provided the velocity in each case varies as

some power of the distance.

For the brachistochrone and the free paths respectively, we have

t>*= 2MU-V(n- 1), t>'
8=2M

/u'- 1

/('- 1).

These satisfy the condition vv'=k* if n + n' = 2, (Art. 599).

:. Prove that the ellipse is a brachistochrone for a central force tending
from the focus and equal to nj(2a

-
r)

a
. [Townsend.]

The conic is a free path for a force n/SI* tending to the focus ,<?. Hence

making the force act on the other side of the tangent as described in Art. 598, the

conic is a brachistochrone for an equal force tending from the other focus //.

1. Prove that the central repulsive force for the brachistoohronism of a

plane curve varies as d(p*)jdr, the circle of zero velocity Wing given by the

vanishing of p.

Prove that the cissoid x (z
3 + y

2
)
= 2<iy

1
is brachistochronous for a central

i-iive force from the point (-a, 0) which at the distance r from that point is

proportional to r/(r* + 15a*)', the particle starting from rest at the cusp.

[Math. Tripos, 1896.]
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Ex. 5. Prove that the lemniscate of Bernoulli can be described as a brachis-

tochrone in a field of potential /if
8

, r being measured from the node of the

lemniscate, and find the necessary velocity. [See Arts. 320, 606, Ex. 2.]

[Math. Tripos, 1893.]

Ex. 6. A particle, acted on by a central attractive force whose accelerating

effect at a distance r is ^
r

'

a , a being a constant, is projected from a given point

with the velocity from infinity. Prove that the form of the groove in which it must

move in order to arrive at another given point in the shortest possible time is a

hyperbola whose centre coincides with the centre of force. [Math. Tripos.]

Ex. 1. Show that the force of attraction towards the directrix of a catenary,

along perpendiculars to it, for which the catenary is a brachistochrone, will vary as

the inverse cube of the perpendicular. [Coll. Ex. 1897.]

607. Brachistochrone on a surface. To find the brachis-

tochrone on a given surface we require only a slight modification

in the argument of Art. 591. Proceeding as before, we find

QSy + RSz)ds,

-r, d 1 d /I dx\ . . . .,

where P = -=--- -y
-

-y- ,
with similar expressions for Q and

dx v ds \v dsj

R. Since St is zero for all variations of the curve on the surface,

we must have

If f(x, y,z)
= Q is the equation of the surface, the variations are

connected by the one equation

where suffixes imply partial differential coefficients. We must

therefore have P/fx = Q/fy = R/fz . The equations of a brachisto-

chrone on the surface /(#, y,z)=Q are therefore given by

-
dxv ds vds

~~

dyv~dsv~ds''
y ~dzv ds vds

If the brachistochrone is to begin and end at given bounding
curves drawn on the surface, we equate to zero the integrated

part of St, taken between the limits. Fixing the ends in turn, we

see that at each end the cosine of the angle between the tangents
to the curve and to the boundary is zero (Art. 592). The brachis-

tochrone therefore cuts the boundaries at right angles.

6O8. By writing v = k'2lv' as in Art. 599 these equations may be put into

the form

_w\ I

f _(d^_dv\
I

f _(d?z_djr\
I

dx)l
jx
~\dt^ di)/

Ju
~\dt'

2 dz)/
h '
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These are the equations of motion of a particle moving freely on the constraining
surface. It follows that the brachistochrone from point to point on a constraining

surface in a field U+ C is a free path on the same surface in a field W+C', where

/i\
The relation between the component forces in any direction is F'= - F ( -

I .

Ex. If the particle is constrained by a smooth wire to describe the brachisto-

chrone on the surface without a change in the field of force, prove that

where H, G are the components of the impressed forces along the normal to the

surface, and that tangent to the surface which is perpendicular to the path, and

/?
,

7?2 are the components of the pressure in the same directions. Also p is the

radius of curvature of the path, and x the angle the osculating plane makes with

the normal to the surface.

The first is obtained by transforming the equation of motion of a free particle

/' . viz. i-'
2 sin x/p=G' by the rule given above, the others then follow from the

ordinary equations of motion of the particle P.

We may also sometimes find the brachistochrone on a given surface by

making a comparison with the brachistochrone on some other more suitable

surface.

Let us derive a second surface from the given one by writing for the coordinates

j, y, z of any point P some functions of , 77, f, the coordinates of a corresponding

point Q. Let these functions be such that

where /x is a function of
, 17, j". Geometrically this equation implies that every

elementary arc ds drawn from a point P on the surface bears the same ratio to the

corresponding arc d<r drawn from V, viz. the ratio /x : 1.

The brachistochrone on the given surface is found by making t a minimum,
where

'

/ds
[nd<r

.=/
and the velocity v of P is some given function of the coordinates of P.

Expressing v in terms of , 17, f, this integral implies that the corresponding
curve on the derived surface is also a brachistochrone, the velocity v' being given

by v'=vln. The work functions for the motions of P and Q are respectively

r3 = 2(r/+C) and U'=(U+C)ln*.

If we arrange matter* BO that /*/p is constant, the velocity on the second

surface is constant. The brachistochrones on the given surface then correspond to

geodesies on the derived surface.

This comparison assists us in determining the point on a brachistochrone with

one end given at which the time ceases to be a minimum.

The derived surface may be obtained in many ways, for example by using the

in. thod <>f inversion. The theory of this surface is also used in making map*;
see the United States Coast Survey. . The applica-
tion to brachistochrones is given by Darboux in his TMorie gtntraU cto Surfaces.

A particle P moves on a sphere under the action of a centre of repulsive

force situated at a point O on the surface, and the velocity v at any point distant
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r from O is v = Ar-. Prove that the brachistochrone from one given point to

another is a circle whose plane passes through 0.

Inverting the sphere with regard to 0, the diameter 2a being the constant of

inversion, the derived surface is a tangent plane. The curve is traced out by Q,

usually called the stenographic projection of that traced by P. The ratio of the

elementary arcs described by P and Q are in the ratio r2 : 4a2
. Hence if the path

of P is a brachistochrone for a velocity v = Ar~, that of Q is a brachistochrone for

a uniform velocity. The path of Q is therefore a straight line and that of P is a

circle. Another proof follows from Arts. 608, 318.

610. Bertrand's theorem. A series of brachistochrones is drawn on a given

surface from a point A, and the arcs AB, AB', &c. are described in equal times,

the velocity at A being given. Prove that the locus of B cuts all the brachisto-

chrones at right angles.

The following amounts to Bertrand's proof. If possible let the angle AB'B be

acute. Drawing the arc BC so that the angle CBB'>CB'B, the sides of the

triangle BOB' will then be elementary and the triangle may be regarded as recti-

linear. It follows that the arc CB f>CB. The time of describing CB' is > than

that of describing CB because the velocity at every point in the neighbourhood of

C is ultimately the same. The time of describing the line AGB is therefore less

than that of describing AB' or AB. The path AB could not then be a brachisto-

chrone. This proof is the same as that used by Salmon in his Solid Geometry,

Art. 394, to prove the corresponding theorem for geodesies. Bertrand's theorem is

now generally enunciated in a generalized form and to this we proceed in the next

article.

611. A surface Sj being given, let us draw from every point A on it that

brachistochrone which starts off at right angles to the surface. Let lengths AB be

taken along these lines so that the time t of transit from the surface along each is

equal to a given quantity. The locus of the extremities B traces out a second

surface which we may call S2 . By Art. 592, we have

dt= 30-2 cos 2/v2
- Sa~

l
cos 6

llv1
.

By construction cos ^=0 for each line and, since the times of describing neigh-

bouring lines are equal, 6t= 0. It follows that the surface S.2 also cuts the lines at

right angles.

If the surface S
a

is an infinitely small sphere all the brachistochrones diverge

from a given point A . The locus of the other extremities of the arcs drawn from A
and described in equal times is therefore an orthogonal surface.

This proof may be applied to brachistochrones drawn on a given surface by

expressing the conditions at the limits in Art. 607 in a form similar to that in

Art. 592.

This theorem though enunciated for a brachistochrone applies generally to

problems in the calculus of variations. The time t may stand for any integral of

the form J0 . ds where is a given function of x, y, z, and the curve is such that

the integral is a minimum between any two points taken on it.

612. Ex. 1. Prove that the equations of a brachistochrone on a surface of

revolution for a heavy particle with a given level of zero velocity are r2

-^-
= Av,
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t^=2</z, where r, <f>,
z are cylindrical coordinates, z being measured downwards

from the zero level. Prove also that the brachistochrone touches the meridian at

the zero level.

Ex. 2. A heavy particle is projected from a given point along a smooth groove

cut on the surface of a right circular cone whose axis is vertical and vertex

upwards, with a velocity due to the depth from the vertex. Prove that, if it reach

another given point not more than half-way round the cone in the least possible

time, the curve of the groove must be such as would, if the cone were developed,

become a parabola with the point corresponding to the vertex as focus.

[Math. Tripos, 1873.]

:J. Prove that the brachistochrone on a vertical cylinder for a heavy

particle with a given level of zero velocity becomes the brachistochrone on a

vertical plane when the cylinder is developed on the plane. [Roger.]

Ex. 4. Find the brachistochrone when the velocity at any point of space is

proportional to the distance from a given straight line. Prove that the curve lies

on a sphere and cuts all the circles whose planes are perpendicular to the given

straight line at a constant angle, i.e., the curve is a loxodrome. [Tait.]

Motion of a particle relative to the earth.

613. Let be any point on the surface of the earth and let

X be its latitude. Then \ is the angle which the normal to the

surface of still water at makes with the plane of the equator.

Let OL = 6 be a perpendicular from on the axis of rotation.

Let ft> be the angular velocity of the earth, then the earth turns

round its axis from west to east in the time 2ir/o>.

As we intend to discuss the motion of a particle P relative to

axes moving with the earth and having the origin at 0, it is

convenient to begin by reducing to rest. We therefore apply
to the particle P an accelerating force equal to aPb and acting in

thf direction LO. We also apply an initial velocity equal to o>6

opposite to the direction of motion of 0, i.e. in a direction due
:tnls tr"'

When the particle has been projected from the earth it is

acted on by the attraction of the earth and the applied force o>
2
6.

The force usually called gravity is not the attraction of the

earth, but is the resultant of that attraction and the centrifugal
force. Th- t.nn ..f the earth is such that at every point of its

Mirfao- this resultant acts perpendicularly to the surface of still

'r. Let g be this force at the point 0, then when the particle

it 0, and has been reduced to rest, the resultant force is

Dented by g.
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When the moving point P has ascended to a height h, the

attraction of the earth is altered and is nearly equal to g (1 2h/a),

where a is the radius of the earth. Since h is usually not more

than a few hundred feet and a is roughly 4000 miles, it is obvious

that the change in the value of gravity is so small that, for a

rf (ippro.iiination at least, we may regard gravity as a force
constant in direction and magnitude. Since ZTT/CO is 24 hours, we

find that co-a is nearly equal to #/289. Hence if we neglect gh/a
we must also neglect co-h at all points near 0. The applied force

afb is not neglected because at points near the equator 6 is nearly

as large as the radius of the earth.

614. The equations of motion of a particle referred to axes

moving with the earth have been already formed in Art. 49.9.

\Ve have here merely to express the components 6l% 2 , 3 in

terms of the angular velocity o> of the earth. We then substitute

the values of the space velocities u, v, w in the equations of the

second order and neglect all terms of the form o>
2
#, a?y, o>

2
. We

thus find

where X, Y, Z are the impressed forces other than gravity, the

mass being unity.

615. It will clearly be convenient to choose as the axis of z

the vertical at 0. If the axis of x be directed along the meridian

towards the south and the axis of y towards the west, we have

Bl
= &) cos X, #2 = 0, #3

= a) sin X,

since X is the latitude of the place.

It is sometimes necessary to take the axis of x inclined to the

meridian at some angle /3, the angle @ being measured from the

south towards the west. We then have

#! = &> cos X cos /3, 2
= ft> cos X sin j3, 3 &) sin X.

616. If we wish the axes to move round the vertical with

an angular velocity^, we have @ = pt + e, where e is some constant.
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We then have

#i = a) cos X cos ,
0.2
= to cos X sin

, 3
= o> sin X 4- p.

The components 0,, 2 , 3 are not now constants, and in making
the substitutions for ?/, v, w in the equations of motion their

differential co.-tHri. -nts \\ill not disappear. But if p be any small

quantity of the same order as o>, these differential coefficients are

of the order CD-. The equations of motion will then be still

represented by the forms given in Art. 614.

617. As in some few cases it is necessary to examine the

terms which contain a>
2

,
we give the results of the substitution

when the axis of z is vertical, while those of x, y point respec-

tively southward and westward :

,
. + 2o> sin X

,
to" sin2 \x-wr sin X cos \z A",

at* at

= F,

2eo cos X -~ a>
2 cos2 \z a>

2 sin X cos \x = - g + Z.
at- at

618. Ex. A panicle P it attached to n point A at the summit of a high tower

and when in relative rest the particle is allowed to fall freely. Tli>- point A briny

at a height h rcrticnlltj above 0, it is rt'jiiin'/l to find the point at which the particle

strikes the horizontal plane at 0.

Taking the axes of x, y to point due south and west, the equations of

motion are

x" -
2y'0,= 0, y"

-
2*'^ + 2x'03= 0, *" + 2y'0l =-g,

where 0,
= u cos X, 0,= - u sin X, and the accents denote djdt (Art. 614). We solve

these by successive approximation.

As a first approximation, we neglect the terms which contain u. Remembering
that initially x, y, x', y', z' are each zero and z = h, we arrive at .r=0, y = 0,

z = h-\gt*.

As a second approximation we substitute these values of x, y, z in the terms of

the differential equations which contain 6 or u. We obtain after an easy integration

The particle being initially in r, we have ar'sO, y'= f *'=0, henoe

A =0, C = 0, K = 0. The initial velocities m tpare are not required here, but (after

" has been reduced to rest) these are given by n = 0, r= -h$lt ir = 0. To the

value of v we may add the velocity of O, viz. - c*6. Also when f = 0, we have x = 0,

We see from the value of x that the vertical motion i$ unaffected by the rotation

of the earth. The time of falling is given by h = \g(*. Since x = throughout
the motion, the particle strikes the horizontal plane on the axis of y, and there is
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no southerly deviation. Since 0,
= w cos X we have y

- ^gucos Xt3 ; there is there-

fore a deviation towards the ea*t which is proportional to the cube of the time of

descent. This deviation is greatest at the equator.

619. Ex. 1. Show that the path of a particle falling from relative rest is

nearly the curve 325a//
2=cos2 X

2. A particle is projected vertically upwards in vacuo with a velocity F.

Prove that when the particle reaches the ground there is no deviation to the

south, and that the deviation to the west is 4w cos XF3
/30

2
. [Laplace iv., p. 341.]

Ex. 3. A particle falls from relative rest at a point A situated at a height h

above the point 0. Supposing the resistance of the air to be represented by KV

where v is the velocity and K a small quantity, find the effect on the easterly

deviation.

Measuring z upwards and neglecting the terms x'63 , y'0l ,
as we now know

that they are of the order or (Art. 618), the equations of motion become

y"-20X=-*2A z"=-g-KZ
f

.

The vertical motion is sensibly the same as if the earth were at rest. Substi-

tuting z' = -
gt in the first equation,

where d=djdt. This leads at once to y= -^gdj3 f 1 -- t\ . The easterly

deviation is therefore slightly diminished by the resistance of the air.

Ex. 4. Prove that, if the attraction of the earth on the falling particle were

represented by X= -gxja, Y= -gyja, Z= -g (l-2zja), the time of falling from

rest at a height ft, as deduced from the equations of Art. 614, would be increased by
the inappreciable fraction 5/t/6a of itself. Thence show that the easterly deviation

is not perceptibly altered.

Ex. 5. The soutJiern deviation. A particle falls from relative rest at a point A
situated on the vertical at a point O on the surface of the earth. Let the southern

horizontal component of the attraction of the earth be represented by

X= sin X cos X (Ax + Cz),

where A and C are very small functions of the ellipticity and the angular velocity

of the earth, the point having been reduced to rest. Prove that the southern

deviation measured on the tangent plane at is sinXcosX<7
4
(f w

2 + vr\C).

This result is obtained by substituting the approximate values of y and z

Dbtained in Art. 618 in the small terms given in Art. 617. Expressions for the

components of the attraction of the earth are to be found in treatises on the

"figure of the earth" (see Stokes' Mathematical and Physical Papers, vol. u. p.

142). These give approximately (after some reduction) C=(2ni-e)2#/a, where

m=u?a/g and e= 1/300, hence <7=2w2
nearly.

620. Two cases of motion. Two special cases of the motion

of a particle deserve attention
; (1) when the particle in its motion

does not deviate far from the vertical and (2) when the motion is

nearly horizontal.
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Supposing the axis of z to be vertical, the horizontal velocities

dxjdt and dy/dt are small compared with the vertical velocity

dz/dt in the first case. The products of the horizontal velocities

by a) are therefore of a higher order of small quantities than the

luct of the vertical velocity by o> and should be neglected in

a rir>t approximation.

In the second case, on the contrary, dz/dt is small and we

neglect its product by w. The two sets of equations are therefore

as follows (Art. 614):

d-.r dz A d*x dy n

dr
V/ , z*o -Y^ '

2 di*- Y
'

d'z ^ ^

\V.- notice that when the motion is nearly vertical the com-

ponents 0j, 0.2 enter into the equations, while 3 does not appear
until we proceed to higher approximations. It is therefore the

component of the angular velocity about a tangent to the earth

which affects the motion.

On the other hand when the motion of the particle is nearly

horizontal it is the component of the earth's rotation about the

al, vix.
( ,
which plays the principal part.

It we compare the x and y equations for the case in which

the motion is nearly horizontal with those given in Art. 614,

11 the square of w is neglected we see that they express the

motion of a particle moving freely in space but referred to axes

which turn round the vertical with an angular velocity 0,. If,

as is generally the case, the fore A Y are either zero or in-

dep'inl.'nt .,t" th ea "f th.- n.-arly constant quantity z, we
thus <J>t<i in these equations in *

'/way. The particle

moves tn -ly in space, unatV., tl l>y the rotation of the earth,

but the axes of refen IK-.- move round the vertical and leave the

particle behind. This geometrical interpretation of the equations
i more evident by considering some simple cases.

621. As an example coruider the ca$e of a pendulum. When the bob makes

mall oscillations the motion is nearly horizontal. To construct the motion we

suppose the pendulum to oscillate freely in space (with the proper initial condition*).

oscillation is I by the earth, and the effect is that the plane of
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oscillation appears to revolve about the vertical with an angular velocity equal and

opposite to the vertical component of the earth's angular velocity. The plane of

oscillation therefore turns from west to south with an angular velocity wsinX.

This problem is more fully considered in Art. 624.

622. Flat trajectories. A bullet is projected from a gun, situated at the

point O, with a great velocity F, in a direction making a small angle a with the

horizon so that the trajectory is nearly flat. It is required to find the motion.

The initial velocity of the bullet in space (after has been reduced to rest) is V.

After leaving the gun the bullet describes a parabolic path in space, while the axes

of reference turn with the earth round the vertical at 0, and the bullet is left

behind by the axes (Art. 620). Supposing that the initial plane of xz contains the

direction of projection, the coordinates of the bullet at the time t are evidently

x= Vt cos a, y = - x0
3
t where 3

= - w sin X.

The deviation y is therefore always to the right of the plane of firing in the

northern hemisphere, and to the left in the southern hemisphere. If R be the

range the whole deviation is Rtu sin X. We notice also that the deviation y is

independent of the azimuth of the plane of firing, and that the time of describing

a given distance x is independent of the rotation of the earth.

The third equation of motion (Arts. 614, 615) gives

-3-3= -<7 + 202 ,
/. s=Ft sina-0 2 -Fw 2

cosacosXsin/3,

where 2
= -wcosXsin/3 and

ft
is the angle the plane of firing makes with the

meridian. The vertical deviation of the bullet from its parabolic path at the

moment of reaching a target distant x from the gun is therefore - xtu cos X sin
ft.

623. Deviation of a projectile. Ex. A particle is projected with a velocity

V in a direction making an angle a with the horizontal plane, and the vertical

plane through the direction of projection makes an angle ft with the plane of the

meridian, the angle ft being measured from the south towards the west. If x is

measured horizontally in the plane of projection, y horizontally in a direction

making an angle ft + %ir with the meridian, and z vertically upwards from the point
of projection, prove that

x= V cos at + (
V sin at2 - 1 g t

3
)
w cos X sin ft,

y = (V sin at2 - & gt
3
) w cos X cos ft + V cos at2 u sin X,

z= V sin at - %g& - V cos at2 w cos X sin
ft,

where X is the latitude of the place, and w the angular velocity of the earth.

Prove also (1) that the increase of range on the horizontal plane through the

point of projection is 4w sin
ft cos X sin a (J sin2 a - cos2 a) F3

/0
2
,

(2) that the deviation to the right of the plane of projection is

4w sin2 a
(& cos X cos

ft
sin a + sin X cos a) F3

/<?
2

,

and (3) that the time T of flight is decreased by 2T cos a cos X sin ft Fw/0.

It is not usual in practical gunnery to take account of the rotation of the earth

except when F is very great, and then only the terms containing F are perceptible.

624. Disturbance of a pendulum. A particle of mass ra

is suspended by a fine wire of length I from a point fixed

relatively to the earth, and being drawn aside, so that the wire
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makes a small angle a with the vertical at 0, is let go. It is

required to find the motion
;
see Art. 621.

The equations of motion are those given in Art. 614. Taking
the axis of z vertical and the origin at the position of equilibrium

of the mass m we see that the ordinate z is less than 1(1 cos a),

and the terms of the form 6dz/dt are of the order Icoa?: these we
shall reject. Let us also make the axes of x, y turn slowly round

the vertical with such an angular velocity p relatively to the

earth that 0, = o>sin\+p becomes zero, as explained in Art.

616. The equations of motion are now

= _
dt*

=
m I

'

dtz

where T is the tension of the string, and 0,, 6.2 have the values

given in Art. 616.

The third equation proves that the tension T differs from mg
by quantities of the order Iwa at least. Since x/l and y/l are of

the order a, and we have agreed to reject terms of the order <wa
3
,

we must put T = mg in the two first equations.

Since the two first equations are independent of o>, the motion

of a real pendulum when affected by the rotation of the earth is

the same as that of an ideal pendulum, unaffected by the rotation,

but whose path, viewed by a spectator moving with the earth,

appears to turn round the vertical with an angular velocity

p = co sin X in -i duvction south to west.

It h^ = g t
the solutions of the equation are clearly

<r - A cos (nt + C\ y = B sin (nt + D)......... (2).

It appears that the time of oscillation, viz. 2?r/n, is unaffected by
the rotation of the earth. To determine the constants of inte-

gration, we notice that when the particle is drawn aside from th.

vertical and not yet liberated, it partakes of the velocity of the

earth and has therefore a small velocity relative to the axes.

This is equal to - law sin X and is transverse to the plane of

displacement. Taking the plane of displacement as the plane
of xz at the time t *0, thr initial mm lit ions are

ar = /a, y = 0, dx/dl = 0, dy/dt = - law sin A,
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It is then easy to see that

A = la, Bn = - law sin X, (7 = 0, D = 0.

The particle therefore describes an ellipse whose semi-axes are

A and B. Since the ratio of the axes, viz. o> sin X *J(l/g) is

very small, the ellipse is very elongated and the particle appears
to oscillate in a vertical plane. The effect of the rotation of the

earth is to make this plane appear to turn round the vertical

with nn angular velocity a> sin X.

625. It is known that, independently of all considerations of the rotation of

the earth, the path of the bob of a pendulum is approximately an ellipse whose

axes have a small nearly uniform motion round the vertical. This progression of

the apses vanishes when the angle subtended at the point of suspension by either

axis of the ellipse is zero
;
see Art. 566. As the presence of this progression will

complicate the experiment, it is important (1) that the angle of displacement should

be small, (2) that the pendulum when drawn aside should be liberated without

giving the bob more transverse velocity than is necessary. This is usually effected

by fastening the bob when displaced to some point fixed in earth by a thread, and

when the mass has come to apparent rest it is set free by burning the thread.

The progression of the apses due to the angular magnitude of the displacement
is in the opposite direction to that caused by the rotation of the earth.

The advantage of using a long pendulum is that the linear displacement of the

bob may be considerable though the angular displacement of the wire is very small.

The bob should also be of some weight, for otherwise its motion would be soon

destroyed by the resistance of the air; Art. 113.

626. As we have rejected some small terms it is interesting to examine if

these could rise into importance on proceeding to solve the equations (1) to a

second approximation. To determine this we substitute the first approximation of

Art. 624 (2) in the differential equations. The third equation shows that Tjm - g
has two sets of terms. First, there are terms independent of u which lead to the

solution already obtained in Art. 555, and need not be again considered here.

Next, there are terms which contain w as a factor and have the form sin(n)
where p=pt, Art. 616. These when multiplied by xjl or y\l give no terms of the

form sinnt or cosnt. None of the terms which contain w can rise into importance

(Art. 303).

627. The idea of proving the rotation of the earth by making experiments on

falling bodies originated with Newton. But more than a hundred years elapsed

before any observations of value were made. In 1791 Guglielmini of Bologna
made some experiments in a tower 300 feet high. The liberation of the balls was

effected by burning the thread by which they were suspended, and this was not

done until they had entirely ceased to vibrate as observed by a microscope. The

vertical was determined by a plumb line, but he had to wait several months before

it came to rest. The results were disappointing for they showed a deviation

towards the south nearly as great as that towards the east. This discrepancy was

due to two causes, (1) the numerous apertures in the walls of the tower caused

slight winds, (2) the vertical was not ascertained until a change in the seasons had
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altered its position. Other experiments were made by Benzenberg about 1802 in

Hamburg, but Reich's experiments in 18313 in the mines of Freiberg are

generally considered to be the most important. The height of the fall was 158

metres and the mean of 106 experiments gave a deviation to the east of 28&
millimetres, the deviation to the south being about a twentieth of that towards the

east. These were the experiments that Poissou selected to test the theory; he

showed that the observed easterly deviation was within a thirtieth of that given

by calculation. Poisson also investigates the general equations of motion of a

particle relative to the earth and obtains equations equivalent to those given in

Art. t-17. He then applies them to a variety of problems. Journal de Vfcole

polytfchniqiii, 1838.

The defect of experiments on falling bodies is the smallness of the quantities

to be measured. In 1851 Foucault invented a new method
;
he showed that the

plane of oscillation of a simple pendulum appeared to rotate round the vertical

with an angular velocity equal and opposite to the component of the earth's

angular velocity. The advantage of this method is that the experiment can be

continued through several hours, so that the slow deviation of the pendulum can

be (as it were) integrated through a time long enough to make the whole displace-

ment very large. Foucault's experiment was widely repeated with many improve-
ments. Among English experiments we may mention those by Worms in 1859

at King's College, London, in Dublin by Galbraith and Haughton, at Bristol, at

Aberdeen, at Waterford in 1895. The accuracy of the method is such that it is

possible to deduce the time of rotation of the earth. Foucault's observations gave

"7*, while the repetition of the experiment at Waterford led to 24h
, 7m , 30",

the true time lying between the two (see Engineering, July 5, 1895). Though the

experiment can be easily tried when only the general result is required, yet many
difficulties arise when the deviation has to be found with accuracy. Indeed

Foucault admitted that it was only after a long series of trials that he made the

experiment succeed (see llulletin de la Socit6 Astronmiquc <lc France, Dec. 1896).

('unjtujnte function*.

628. Inversion*. Let a point P of unit mu>> move un.K r

the action if forces whose potential in polar coordin.i:

U=f{r, 0, <f>).
Produce any radius vector OP of the path to Q,

where OP.OQ*=k*; the locus of Q is railed the inverse path of

that of P and any t\\*> ]>ints thus related are called inverse

s. Let OP=r, OQ =
p.

Let P7

, Q[ be two oth- r invns. jn.ints near the former, then

"/'.OQ-OP'.OQ', a circle can be described about the

iu:idrilat. -ral PQPQ. Tb y arcs PP', QQf are there-

fore ultimately in the ratio rip. If the points P, Q move so as

The reader may consult a paper by Larrnor in The Proceedingt of the J.

vol. xv. 1884. The principle of least action is there applied

to both the method of Inversion and that of Conjugate functions.

R. D. 25
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to be always inverse points, their velocities u, u ly are connected by
the equation M/M,

=
r/p.

The position of the point P in space is determined either by
the quantities (p, 0, <f>)

or (r, 6, </>). Choosing the former as the

coordinates, the Lagrangian equations of the motion of P are

deduced from

T = iti"
= i

-
4 (p'

2 + PW + p
2 sin2

0$*),

zr+0--..+ a
-/(- ..+

These equations contain only thje polar coordinates of Q. They

primarily give the motion of a point Q describing the inverse

path in such a manner that P and Q are always at inverse points.

Let us now transpose the factor k*/p
4 from T to U. We then

have (Art. 524)

The Lagrangian equations derived from these give the motion of

a particle which describes the same path as that of Q, but in a

different time. Let the particle be called II. The form of T..

shows that II moves as a free particle, acted on by forces whose

potential is U2 . We see also that the masses of the particles P
and II are equal. See also Art. 650, Ex. 2.

The path of either particle may be inferred from that of the

other. If the path of the particleP described with a work function

f(r, 0, <f>) + C is known, then the other particle II, if properly pro-

jected, will describe the inverse path, with a work function

629. To find the relation between the velocities u, v of the

particles P, "Q, when passing through any inverse points P, Q,

we notice that by the principle of vis viva %u* = U+C, %v*
= Uz .

It follows immediately that v = uk-fp", and therefore that ur = vp.

Since the planes of motion OPP', OQQ' coincide, the angular
momenta of the particles, when at inverse points of their paths,

about every aocis through the centre of inversion are equal.

The constant C is determined bv the consideration that the
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known velocity n in the given path must satisfy the equation

The particles P, II do not necessarily pass through inverse

points of their respective paths at the same instant. Let t, r

be the times at which they pass through any pair P, Q, of inverse

points; t + dt, r + dr the times at which they pass through a

neighbouring pair P', Q
f

of inverse points. Since the elementary
a PP, QQ* are in the ratio r : p while the velocities of P, II

are in the ratio l/r : 1/p, it follows by division that the elementary
times dt, dr are in the ratio r8

: p\ The relation between t and r

dt r*
is found by integration from -T- = . This agrees with the ratio

givm in Art. ">24.

Supposing that the particles P, II are projected from inverse

points on their respective paths, their initial velocities must be

inversely as th-ir distances from the centre of inversion. The

initial directions of motion must be in the same plane and make

supplementary angles with the radius vector which passes through
both the initial positions.

630. If the particle P is constrained to move on a surface the argument
needs but a slight alteration. The inverse point Q describes a curve which lies on

the inverse surface. Let
(/>, 0, 0) be the polar coordinates of Q; then these may

also be taken as the Lagrangian coordinates of P. Using the equation of

rse surface, we have p'
= ^6' + -r $' Substituting the values of p, p' in the

<itr d<p

expressions for T and U+ C given in Art. 628, we proceed as before and arrive at

similar results.

631. The Pressures. Wli. n the particles P, II are constrained to move on

a surface and the inverse surface respectively, the pregturt* /?,, IL, at any pair of

invent points are uch that n
}
r3 =It^p

3
.

To prove this we take any axis of z and resolve the forces on the particles

perpendicularly to the meridian plane zOPQ, Art. 491. We then have

1 1 dU
-u7*d*

1 dA I dU.

where A is the angular momentum < irticle about the axis of *, Art. 639,

and dt, dr are the times respectively occupied by the particles in passing from any

pair of inverse points to an adjoining pair.

The forces R
l , Rt act along the normals to the two surfaces. To understand

metrical relations, we describe a sphere passing through P
t Q and touching

one surface. Then since the sphere hat the property that for every chord the

252
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product OP. OQ is the same, the sphere will touch the inverse surface also. The
normals therefore meet in the centre of the sphere and will make equal angles with

every straight line perpendicular to the radius vector OPQ. The angles a
}

. a., of

resolution are therefore equal, if the reactions are taken positively towards the

centre of the sphere.

Since p
3 dt = r'dr and p

2 7
2=ra

(l7+C), we see at once that rsR
l =p3R2 . Since

ur=vp, we have J?i/u
3 =l?2/t7

a
, i.e. the pressures at inverse points are also as the

cubes of the velocities.

Ex. Deduce from the relations
/>

2 C72=r2 (U+ C), w2= C7+ C,

(1) that the parallel components G, G' of the impressed forces on the particles

P, n in any direction perpendicular to the radius vector are connected by the

equation p
3G' = r3G.

(2) that the radial components F, F', are connected by p*F' + r*F= - 4rz (U+ C).

632. Ex. 1. The path of a free particle under the action of no forces is a

straight line; in this case we have n2 = 2f7=2(7. By inversion the path of a free

r2

particle, when v2= u2
-^,=2U2 ,

is the inverse of a straight line, i.e. a circle passing

through the origin. This gives C72
= (7A;

4
//>

4
,
and the central force F=4Ck*l(P.

This is Newton's theorem that a circle can be described freely about a centre of

force on the circumference whose attraction varies as the inverse fifth power of the

distance.

Ex. 2. Show that a particle can describe the curve p
2=a2 cos2 + &2 sin2

under the action of a force F in the origin which varies as
-g

<
z
+

^
-

^
-
2
> .

When the axes a, 6 of the curve are so unequal that their ratio is greater

than v/2, the force F changes from attraction to repulsion as the particle proceeds

from the extremity of one axis to the other. Verify this by tracing the curve,

and show that the curve is convex at the extremity of the lesser axis.

Ex. 3. Prove that the central forces F, F', under the action of which a curve

and its inverse can be described about the centre of inversion are so related that

5- + -r^ =2 ;
show also that the velocities v, v' at inverse points are connected

n * n p

by vrv'r1

. [This follows easily from the expression for F given in Art. 310.

When h=h', Art. 629, this agrees with Art. 631, Ex.]

Ex. 4. A particle P moves on a sphere under the action of a centre of

attractive force situated at a point on the surface, and the velocity v at any

point is B/r
2 where r=OP. Prove that the path is a circle whose plane passes

through 0.

Inverting the sphere, we find that the stereographic projection is a straight

line. The result follows at once, see Art. 609.

633. Conjugate functions. Let the Cartesian coordinates

(a?, y), (f, 77) of two corresponding points P, Q be so related that
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where/ is any real function and * = \/( !) Expanding the right-

hand side we have

*+>/*' = <#>(?, *7) + ^(M)*'.................. (2),

where
</>
and

>/r
are real functions. The transformation is therefore

effected by using the equations

*-*(f.i). y-*(f,i) ..................(3),

the motion of P following geometrically from that of Q. Differ-

entiating (1) we find

0. {f + *'*},

.''-' + /r = ^.(ra + V2

i
.................. (4),

where /i
2
is a real positive quantity given by

/'=/' + *')./'(f-i0 .................. (5).

Let U=F(x,y) be the work function of the forces which act

on the particle P. The motions of P and Q may be deduced by
the Lagrangian rule from

the constant of U being included in F for the sake of brevity.

Transposing the factor y? to the work function, the equations

ur iv by the same rule the motion of a particle IT, whose mass is

equal to that of P, which (when properly projected) will describe

the same path as the point Q, but in a different time, Art. 5-4.

To find the r-l,iti>n between the velocities u
t
v of the particles

/', II -
1
"ii< ling points of their paths, we observe that

6 ^u^ U, va = U.2 ,
the velocities are such that v = pu.

To find the ratio of tin- times dt, dr we notice that, by (4),

the corresponding arcs ds, d<r are such at ds = pd<rt
while pu = v.

It follows by division that dt

034 is known that a particle can describe the ellipse

force tending to the centre equal to xr. It is required to find the conjugate

th and law of force when we use the transformation xi/t = ({*i7i)*/c"~
l
*

Let x = rco0, y = rin0; =pco*0, i}
= psin0; the equation of transfortna-

-M then gives
r = pF./c

-l
f ^ = ,,0.

The equation of the path is therefore

cos1 w0 sin1 n<p c*
- f
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Also, /*
a=

Again in the elliptic orbit,

u2= 2
(U+ C) = K (a

2 + &2 - r2 ).

Hence since v= ^u,

The ratio of the angular momenta, viz. vpjur, is easily seen to be equal to n.

When n= -1, this transformation becomes r=c2
//>,

6= -<f>. The transforma-

tion reduces to a simple inversion, except that is measured positively in the

opposite direction to 6.

635. Ex. If the particle P is constrained to move on any given curve with a

work function C7, while the equal particle II is constrained to move on the

conjugate curve, with a work function U2 =fji?U, the pressures Rlt P2 on the two

curves are in the ratio of the cubes of the velocities, i.e. J2
1/u

3 = J?2/v
3

. This gives

also JZsr/t
3

.

The grouping of trajectories and Jacobi's solution.

636. The Cartesian equations of the motion of a free particle

of unit mass are

dU dU dU ...

and to these we join the equation of energy

fl
2 = #'2 + 2/

/2 + /2 = 2^+2(7 ............... (2).

When the equations (1) have been integrated we have x, y, z

expressed by three functions of t with six constants whose values

become known when the initial values a, b, c of the coordinates

and the initial velocities a', b', c' are given.

Since t enters into the equations (1) only in the form dt, the

differential equations are not altered by writing t + e for t. One

of the constants of integration therefore enters into the solution

as a mere addition to the time. When we eliminate the time we

arrive at two equations which are the equations of all the possible

trajectories in space. The constant e disappears with t, and the

equations of the possible trajectories contain five constants, of

which the energy C may be regarded as one. To understand the
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relations of these trajectories to each other it becomes necessary
to group them into system-.

\V Hist group the trajectories according to the values of the

energy C. Taking any one group, having any given energy, the

four remaining constants are determined for any special trajectory

when the coordinates of some two points A, B arbitrarily chosen

on it are given.

637. Action. If ds be an element of the arc of the traject. ay.

the integral V=ftnvds is called the action as the particle passes

from A to B. If mv* be the vis viva of the particle in any position

have V=fmtfdt, the limits being the times ^ and t of

passing through A and B. When we are only concerned with the

motion of a single particle, it is convenient to suppose its mass

to be taken as unity.

Considering a single particle, let s be measured from A to B
along the trajectory of least action and let the length AB be I.

L A'B' be a neighbouring trajectory (Art. 590) from some point

i ear A to a point & near B. Proceeding as in Art. 591, writing

v for
,
we find

where the part outside the integral is to be taken between the

limits A and B and the energy C has been varied for the sake

of generality. It is easy to deduce from the equations of motion

(as in Art. 599) that the coefficients of &*, %, Be inside the

integral are zero. Also since Jt^
= /" + C, we have vdv/dC=*l.

Since vdx/ds is the x component of the velocity we thus have

BV= x'Bx + y'By + z'Bz - a'Ba - b'Sb - c'Sc + (-*) BC. . .(4).

' motion of a system of particles, either constrained or free,

and all taking different paths, it is more convenient to take t as the independent
variable. Let us imagine the system to be moving in some manner which we will

call the actual course. Let the work fin the field be V and let L be the

Lagrangian function, then L t. 500). Let 0,, 3 ,
*c - ** anv '"depen-

coordinates of the system, a,, a,, Ac. their values in some position A occupied

by the system at a time <

'', , 0,, Ac. are functions of f, whose forms it is

our object to discover.

Let us next suppose the system to move in some varied manner, i.e. let the

coordinates be functions of t slightly different from those in the actual coarse. By
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the fundamental theorem* in the calculus of variations, we have

where u = 86 -
6'dt, 2 implies summation for all the coordinates 0^ 2 , &c. and the

limits of integration are t
l
and t. Since each separate term inside the integral

vanishes bj Lagrange's equations (Art. 506), we have

If the geometrical conditions do not contain the time explicitly T will be a
jrp

homogeneous function of 0j', 2', &c. (Art. 510) and therefore 2 ,6' = 2T. We

also suppose that for each varied course the velocities are so arranged that the

principle of energy holds, i.e. T- U=C, though C may be different for each course.

Hence L = 2T-C, and djCdt=8{C (t-tj}. We now have the two equations

(A)

(B).

The action F of the system is the sum of the actions of the several particles.

We therefore have V=ftTdt. When the system reduces to a single particle of unit

mass 2r=z/2 + y"
2 + z'2

, and the equation (B) becomes the same as (4).

638. Let us consider the motion of a single free particle and

let the energy C be given, therefore 8(7=0. Let vlt v.2 be the

velocities at A, B', So^, 8o-2 the displacements AA', BB'
\
Olt 2

the angles these displacements make with the positive directions

of the tangents at A, B] then, as in Art. 592, (4) becomes

8V= v.2 cos 2S(T2 Vi cos d^a-i

* The proof of this theorem is as follows. We have

8lLdt=j(8Ldt+Ld8t)-[L8t]+j(8Ldt-dL8t).

Now L is a function of the letters typified by 0, 6',

where suffixes imply partial differential coefficients. Since

d6 _ de+_dSe _d0_dS8_d0 ddt

dl~ dt + dS't dt~ dt dt dt
'

/. 86' - 6"dt =
|-

(50
-

6'dt)
= u',

substituting we find

5 jLdt = [LSt] + J2 (Lew + Le>(') dt.

Integrating the last term by parts we immediately obtain the theorem in the text.
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Introducing the mass m, this maybe read, the change of the action

naming from one trajectory AB to a neighbouring one is the

difference of the virtual moments of the momenta at the two

ends.

Taking any arbitrary surface which we may call Slt let us

group together all the trajectories which cut Sl orthogonally;
tin 'ii cos #! = (). On each of these trajectories let us take the

point B so that the action from the surface Sl to B is some given

quantity. As we pass from one trajectory to a neighbouring one,

B traces out a second surface which we may call $2 ,
and at every

point of S.2 we have 8T=0. It follows that for this surface

(supposing it to be of finite extent) cos 0.2 is also zero. The

trajectories therefore intersect the surface fifa at right angles.

Considering all possible trajectories we first group them ac-

cording to the value of the energy. We classify them again by

._(
all those at right angles to some given surface. We

have now a congruence of trajectories. The theorem just proved
asserts that all these trajectories can be cut orthogonally by a

em of surfaces. These orthogonal surfaces are such that,

when any two are given, the action from one to the other is the

same for all the trajectories. See Thomson and Tait, Treatise on

Natural Philosophy, 1879, vol. I. Art. 332.

All possible trajectories may be grouped together in the manner

just described in many different ways. One method is to select

a sin tar, intersecting all the trajectories. Each point of this

siirfa* may be regarded as the centre of an infinitely small

sphere which all the trajectories intersect at right angles. The
surface S

l
is then reduced to a collection of points occupying an

Tin- i- the method of grouping adopted in

:<), 339, &c. By a different grouping we obtain different

orthogonal surfaces.

639 These considerations lead u- t. a rule which is a special

case <>f that given by .Jar. .hi I'm- the solution of dynamical problem-.
When this method is applied to the dynamics of a particle the

orth"LT"nal surfaces are investigated first and the trajectories

afterwards dedun-d. In the general case of a system of ri

!'-tatin is nut s,,
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640. Let the action V be expressed as a function of the energy

C and of the coordinates (x, y, z), (a, b, c) of the particle in the two

arbitrary positions B and A. Then by the principles of the

differential calculus,

the energy being varied for the sake of generality. Comparing
this with the expression (4) (Art. 637) we see that

Substituting in the equation (2) of energy, we find

where U is the value of U when we write for x, y, z their initial

values a, b, c. These are called the Hamiltonian equations of

motion.

It is obvious that if we can deduce from the equations (7)

the proper form for the function V, the first set of (6) will give

the component velocities of the particle and the second set will

give the relations between the coordinates x, y, z and their initial

values. The last equation will give the time.

Jacobi proved that it is not necessary to obtain the general

integral of either differential equation. It is sufficient to discover

one solution of the form

V=f(x,y,z,C,,/3) + y .................. (8),

containing three new constants a, ft, y. He also proved that the

introduction of the initial coordinates a, b, c into the expression

for V is unnecessary. Instead of these he uses the two constants

of integration here called a, ft.

641. In the first differential equation (7) and in the complete

integral (8), the quantities x, ;/,
z are the independent variables.

Jacobi's rule asserts that if we establish the following relations

between x, y, z and a new variable t, the equations of motion (1)

will be satisfied. These assumed relations are

=-" -*> = t+ < ............<">
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where a,, j3lt and e are three new constants. These new relations

make x, y, z functions of t y
C and the five constants a, $, an &,

and 6.

To prove these relations we differentiate (9) with regard to t

and thus arrive at three equations of the form

, +/+/ . ...............(10).dxda y
dyda dzda

The other equations have ft and C written for a, but in the third

the zero on the right-hand side is replaced by unity. These

equations determine x, y, z'.

AU> >ince (8) is a solution of the first of the differential

equations (7), it must satisfy that equation identically. We
may therefore differentiate (7) after substitution with regard to

each of the constants a, ft, C. We thus arrive at three equations
of the form

dfd^ + df #f df*__ Q
dx dxda. dy dyda dz dzda.

The other equations have ft and C written for a, but in the third

the zero is replaced by unity.

Comparing the three equations (10) with the three (11). ire

see at once that

It also follows that

^j^+as^^+xi'fc*' (!3),

\v i t h M i n i . -ssions for y", z".

We may also differentiate (7) after sult it ution from (8) partially

with respect to any one of the three variables x, y, z
;

If $f df ,/;/' mdV'

dxdx* cU" dx'

Substituting fr 1J tin 1, tt-h.m.l side becomes by (13)

to x". We therefore have

dU ., dU , dUm - ' =

which ;uv tin- r.juation> of innl
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642. Consider the system of surfaces defined by

f(xt y,z,C,* t &) = K..................... (14),

where (7, a, are constants and K the parameter. The equations

(12) prove that the direction of motion at any point is normal to

that surface of the system which passes through the point. Thus

the surfaces (14) cut the trajectories at right angles. These tra-

jectories (with their parameters a1} &) may be deduced from (14)

by the rules given in the theory of differential equations or more

easily by Jacobi's equations (9).

The trajectories in Jacobi's method are thus grouped together

according to their orthogonal surfaces. By taking different com-

plete integrals for (8), we group the same trajectories in different

ways. Art. 638.

643. As an example which requires no long algebraical process, let us discuss

the trajectories when the forces are absent. The Hamiltonian equation is

" ........................ .

One complete integral, suggested by the rules for solving differential equations, is

(16),

another complete integral is

F = {(a-a)* + (y-/3)
2 + *s

}*V(2C) ........................ (17).

If we choose the first integral the surfaces V=K are planes and the trajectories

are grouped into systems of parallel lines, the lines taking all directions. If we

choose the second integral, the surfaces V =K are spheres having their centres on

the plane of xy. The trajectories are grouped into systems of straight lines

diverging from points on that plane.

To illustrate the use of equations (9) let us substitute in them the second

integral. We have at once

where r2= (x -a)
2 + (y-/3)

2 + z2 . These evidently give a system of straight lines

diverging from the point x= a, y=/3, 2= 0, described with a velocity

644. When the coordinates chosen are not Cartesian the

expression for the kinetic energy does not take the simple form

given in (2). Let the kinetic energy T be given by

2T = P6'* + Qp* +R^.................. (19),

where P, Q, R are functions of the coordinates 6, <f>, i/r.
Let us

now take as the Hamiltonian equation
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Proceeding exactly in the same way as before, we prove that if

V=f(0,4>,+,C,*,0) + y ...............(21),

be an integral of (20), the first integrals of the Lagrangian

equations of motion (Art. 506), are

The trajectories, &c. are given by

where a,, ,, and e are new constants.

This enunciation includes the most useful cases of Jacobi's

rule. But his method applies also to any dynamical system, in

which T is a quadratic function of the velocities. For these

generalizations we refer the reader to treatises on Rigid Dynamics.

645. l-'..r. 1. Apply Jacobi's rule to find the path of a projectile.

The Hamiltonian equation is

Separating the variables, we find that one complete integral is

V = V(2a) x - (2C - 2a -

2. Apply Jacobi's method to find the path of a particle in three dimensions

about a fixed centre of force which attracts according to the Newtonian law.

Taking polar coordinates we have

2r= r/2 + r2 /2 + r2 sin3 00'*, 7--.

The Hamiltonian equation (Art. 644) may be put into the form

If we equate these three expressions respectively to a, -a + /9cosec*0 and

-/9ootec*0, we obtain three dii jimtions in which the variables are

separated and whose solutions satisfy the Humiltnninn equation. Let the inte-

grals of these be F=/,(r, a), *'=/,,(</, a, ft), K =/,(*, ft). It is obvious that

complete int.rml from which all the trajectories may be

facobi's method to find the motion of a particle in elliptic co-

ordinates (X, MI *) when the work function is

jj Of" '

Taking the expression for T given in Art. 577, the Hamiltonian equation (Art.

644) after a slight reduction becomes
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\\ith similar expressions for dr/dp and dVldv. In these trial solutions the variables

X, /i, v have been separated, the first containing X, the second yu, and the third v.

Supposing the integrals to be V=F1 (X, a, /S, C), F = F2 (/x, &c.), F" =F3 (y, &c.), the

required complete integral is then V = F
l +F2 +F3 + y. The solution then follows

by simple differentiations with regard to the constants a, /3,
C.

This expression for U is given by Liouville in his Journal, vol. xn. 1847. He
uses it in conjunction with Jacobrs solution.

We may also write the expression in a different form. Let pl , p.2 , p% be the

perpendiculars from the origin on the tangent planes to the three confocals which

intersect in any point, and let X, n, v be as before the semi-major axes. We find

by using the expressions for these perpendiculars in elliptic coordinates (Art. 577)

Taking U=p*F(\), (omitting the suffixes) we see at once that the level surfaces

intersect the ellipsoids in the polhodes. The direction of the force at any point P
is therefore normal to the polhode which passes through P. It may be shown by
differentiation that the components, T and N, of the force, tangential and normal

to the ellipsoid which passes through P, are

T= -

where Sn= +?-+-. The Cartesian components X, Y, Z are
\ \n fcn cn

P*xF'(\)

with similar expressions for Y and Z.

We may obtain simpler expressions by combining the three terms of U. Putting

/, (X)
= - X2n+4

, /2 (M)
= -

A*
2n"M

, /3 (")
= - "2n+4 , we see that U is equal to the sum

of the different homogeneous products of X-, AT, v- of n dimensions, each product

being taken with a coefficient unity. This symmetrical function of the roots of

the cubic in Art. 576 may be expressed as a rational function of the coefficients.

We thus find possible forms for U in Cartesian coordinates. For example, putting

/1 (X)=-X
(i

&c., we find

C7= X2 + A*
2 + v2 = .T

2 + 7
2
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As another example, put/j (X)= -X8
Ac., we then have

r =

where A and 2? are two constants.

646. Principle of least action. Let the extremities A f

B of the trajectories be given and let the particle be constrained

:nove from one point to the other along a smooth wire, the

energy being given, Art. 636. Of all the different methods of

1 acting the particle from A to B there may be one which is

the trajectory the particle would take if unconstrained. We see

Art. 637 that for this course the value of SV is given by

^Illation (4). But since the points A, B are fixed, Bx, By, Bz

vanish at each end. We therefore have BV= 0. It follows there-

fore that the free trajectory is such that the change of action in

passing from it to any neighbouring constrained course is zero.

The action for a free trajectory with given energy is either a

or in stationary.

Conversely, if the path from A to B is required which makes

action a max-min, the principles of the Calculus of Variations

require that the coefficients of Bx, By, Bz inside the integral (3)

in Art. 637 should be zero, provided the geometrical conditions

of the problem ]><-i
-mit Bx, By, Bz to have arbitrary signs. Assuming

this, th vanishing of the coefficients leads, as already explained,

to the equations of motion. The result is that the free traject

B is then the path of ?//'/./-////// action r/iven by tiic

'ions.

A similar theorem holds for the motion of a system either free or connected by

geometrical relations. Let any two configurations or positions A, />' bt> pi\< n. If

we conduct the aystt to li by an s described in Art. 637 we

have (since the variations of the coordinates of these positions are zero)

= -
C(dt

-
*,) ...... (A), 3j2r/f = (f

-
/,) SC ...... (D).

Let as DOW suppose that in these varied paths the particles, with. >ut \i< luting

the geometrical relations, are conduct* <1 v.i:i: nob velocities that the energy
C = T-Uhata given value, (the same as in the actual course,) then 3C-0, and the

equation (B) shows that the net ion J27VH u a max-min or it stationary in the actual

The equation (A) gives a companion theorem. Let us suppose that in the varied

paths the particles are so conducted that to a given

I
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647. The action from one given point to another cannot be a real maximum

if the velocity is always the same function of the position of the particle. Every

element of either of the integrals jv'
2dt or jvds is positive and therefore, whatever

path from A to B may be taken, we can increase the whole action by conducting

the particle along a sufficiently circuitous but neighbouring path. Thus, if C be

any point on the free course AH we can conduct the particle along that course

to C, then compel it to make a circuit, and after returning to the neighbourhood

of C conduct it along the remainder CB of the free path. Additional positive

terms are thus given to the integral and the action is increased. The energy of the

motion is unaltered, but the time of transit is longer.

Since every element of the integral is positive, there must be some path joining

A and B which makes the action a true minimum. If the theory of max-min in

the Calculus of Variations gives only one path, that path must be a minimum.

648. It may be that there are several free paths by which the particle could travel

from A to B. Selecting one of these, say ADB, we may ask if the action along it is

a true minimum. Let a neighbouring free path starting from A (the energy being

the same) intersect ADB in C. To simplify matters let no other free path

intersect ADB nearer to .-1 than C. If B lie between A and C there is only one

free path from A to B which is in accordance with the principles of mechanics, and

that path makes the action a true minimum ; Art. 647. If B is beyond C, there

are two neighbouring free paths from A to C. It may be proved that the action

from A to B is not in general a true minimum, the action for some neighbouring

courses being greater and for others less than for the free path AB (Art. 653).

649. It may be that there is no free path from A to B, yet there must be a path

of minimum action. For example, a heavy particle projected from A with a given

velocity can by a free path arrive only at such points as lie within a certain

paraboloid whose focus is at A, Art. 159. The path of minimum action from A to

a point B beyond the paraboloidal boundary is not a free path. When deduced

from the Calculus of Variations it falls under the case mentioned in Art. 646. Its

position is such that it cannot be varied arbitrarily on all sides, i.e. the signs of

the variations dx t 5y, Sz are not arbitrary along the whole length of the course.

Such limitations exist when the path runs along the boundary of the field of

motion (Art. 299). We therefore draw verticals from A and B to intersect the

level of zero velocity (which in this case is the directrix) in C and D. Let us

conduct the particle from A along AC to a point as near C as we please, and thence

along a course coinciding indefinitely nearly with the directrix to a point as near

D as we please. The particle is finally conducted along the vertical DB to the

given point B. Throughout this course the velocity is always supposed to be

>J(2gz) where z is the depth below the directrix. The velocity being ultimately

zero along the directrix the whole action from A to B is reduced to the sum of the

actions along the vertical paths AC, DB. The path close to the directrix cannot

be varied arbitrarily, because the particle cannot be conducted above that level

without making the velocity imaginary. This minimum path is therefore not given

by the ordinary rules of the Calculus of Variations.

A similar anomaly occurs in the case of brachistochrones. The parabola is a

brachistochrone when the force acts parallel to the axis and is such that the

velocity is inversely proportional to the square root of the distance from the
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directrix; Art. 605. The directrix being given in position, the initial and final

points A, II of the course may be so far apart that no such parabola can be drawn.

In this case the brachistochrone is found by conducting the particle along the

vertical straight line AC in accordance with the given law of velocity, thence with

an infinite velocity along the directrix CD, and finally along the vertical line DB
ioB.

The further discussion of these points is a part of the Calculus of Variations.

Some remarks on the dynamics of the problem may be found in the author's

Rigid Dynamics, vol. n. chap. x.

65O. A.r. 1. Prove that the same path is a brachistochrone for v*=f(x, y, z)

and a path of least action for v' 2
=Alf(x, y, z); Art. 599.

The brachistochrone is deduced from the calculus of variations by making

fdsjv a minimum ; the path of least action by making \v'ds a minimum. These

must give the same curve if v'= fc
2
/t? ; (Jellett and Tait).

2. Prove that, if a path be described by a particle P with such a work

function that i-
2
=/(r, 0, 0), the inverse path can be described by a particle II with

A-
4 / k- \

a velocity v', such that v /2=-
5/(-,^,0, where rp=k- ;

Art. 628.

To find the first path we make jvds a minimum. Since ds'lds= plr, the second

path is found by making jv'dspjr a minimum. These are the same integrals.

This mode of proof applies equally whether the particle is free or constrained to

move on a surface.

651. /..r. 1. Prove that in an elliptic orbit described about the focus S, the

time is measured by the area described about the focus S and the action by the

time described about the empty focus //.

If />, p' be the perpendiculars on the tangent from S' and //, we know that

pp'= fc
a

. Since v = hfp, the action jvds becomes jp'ds.hjb*; the area described

about H being bjp'ds, the result follows at once. [Tait, Dynamics of a particle.]

Ex. 2. In an ellipse described about the centre C, perpendiculars PM, PN are

drawn from P on the major and minor axes CA, CB, and A, B represent the

lliptic areas PMA, PNCA respectively. Prove that the action from A to P is

3. Prove that the action in describing an arc of a central orbit is

flu central force is *' = /*/r" and the initial velocity is

.),'(' -S)

that from infinity, prove also that the action is t:m
" "

0, where $ is
ft O -

measured from the maximum or minimum radius vector ; Art. 360.

i. A heavy particle describes a parabola. Prove that the action from any
i to another B is K times the sectorial area ASB, where S is the focus,

i

'<;// and I is the semi-latas rectum.

Prove also that, if the chord AB pass through the focus, the action aloi

parabolic pith is greater than that along the course AC, CD, DB where AC, BD
are perpendiculars on the directrix. Arts. 169, 649.

R. D. 26
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662. Ex. 1. When a heavy particle is projected from a point A with a given

velocity to pass through a point B, there are in general two possible parabolic

paths. Prove that the action is a minimum along that parabola in which the arc

AB is less than the arc AC where C is the other extremity of the chord drawn

from A through the focus.

The action is a minimum when B is not beyond the intersection with the

neighbouring parabola drawn from A
;
Art. 648. Since the chord of intersection

ultimately passes through the focus of either of these neighbouring parabolas, Art.

159, the result given follows at once.

Ex. 2. When the force is central and varies according to the Newtonian law,

there are in general two elliptic paths which a particle could take when projected

from A with a given velocity to pass through B. Prove that the action is a

minimum along that ellipse in which the arc A B is less than A C, where is the

other extremity of the chord drawn from A through the empty focus : Art. 339.

653. Ex. A particle describes a circular orbit about a centre of force

represented by F=/i/r
w

, situated in the centre 0. It is required to find the change
in the action when the particle is conducted with the same energy from a given point

A to another B on the circle by some neighbouring path lying in the plane of the

circle.

Let a be the radius, then taking the normal resolution, the velocity
~l

).
The principle of energy for the varied path gives

Also C=- r -
)^_ 1 ,

since the energy C is the same for both paths.

Let the equation of the varied path be r= a (! + />)
where p is some function

of 6. Substituting we find

} (1).

Here p is equivalent to the dr of the Calculus of Variations.

Since (ds)*=r*(de)*+(dr)*, we find by the same substitution

ds

The action therefore when increases from to 6 is

(3),

where p*= 3 - n as in Art. 367, and the limits are B = to 6. By substituting for p
the value corresponding to any assumed variation of the path, the change in the

action follows immediately.

If the particle starting from A were to describe a neighbouring free path with
the same energy, we know by Art. 367 that the first intersection of the new path
with the circle is at a point given by 6= ir/p nearly.

We may easily deduce from the expression (3) that the action from A to B is a



ART. 654.] TERMS OF THE SECOND ORDER. 4(K>

true minimum if the angle AOB<rjp\ see Art. 594, 648. To prove this we use

an artifice due to Lagrauge*. Since

(4),

where X is an arbitrary function of 6, we may write the integral on the right-hand

side of (3) in the form

The term \p~ taken between the limits is zero, since both paths begin at A and end

at B. Let us choose the function X so that

X2

=^-.p',
.*. \=pt*np(0-a) (5),

then I=((% + \pVde... ...(6).

Since this integral is essentially positive it follows from (3) that the action along

every varied path from A to Bis greater than that along the circle.

This argument requires that X should not be infinite within the limits of

integration. By taking pa = ^ir-e where e is a quantity as small as we please the

values of X given by (5) can be made finite from = to 6 = *lp - e' where e' is a

quantity as small as we please. The argument therefore requires that the point B
should not make the angle AOB>rjp.

ir/u-N the anijle AOB is greater than ir\p we can prove tliat the action dlony

tome varied curves extending from A to B is less, and along others is greater, than that

in the circle.

To prove this let us conduct the particle from A to B along the varied path

whose equation is p=L sin gO. Let /9 be the angle AOB, then since p vanishes at

each end, g is arbitrary except that gp is a multiple of IT. Since pp>r one value

at least of g is less than ;; and the others are greater than p. Substituting in (3),

we find that the integral is

the limits being 6 = to = p. The smaller values of g make I negative, while the

greater values (which correspond to the more circuitous routes) make / positive.

The conclusion is that when the angle A OB > rip, the action along the circle is not

664. l-'.x. A nove* in a plane with a velocity v = <f>(x, y)

en point A and ending at B. The path taken being that of min.

: tn rind ni * tin- ,-<jiition of the path and the clmmjf

tion when the path if varifi

Let the elementary action vdt = 4, J(l + y*) dx be represented by /(, y, p) dx,

where p has been written for y'= .* y + ty, p + 8p for y and p,

*
Lagrange TMorit det / -7. He refers to Legendre,

Memoirs of the Academy of \ 786, and adds that it must be shown that X

does not become infinite betwe< > ta of integration. Not being able to

this quest; -t missed Jacobi's discovery. See also Todhunter's

ry of the Calcttln* of Variations, page 1
26-2
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(but not varying x) the whole increase of action on the varied curve is by Taylor's

theorem,
8A =j[f,Sy +fp Sp + i {/ (5y)

2 + Zf^Sydp +fPP (Sp)^} + Ac.] <fa,

where suffixes as usual represent partial differential coefficients. Integrating the

second term by parts, as in Art. 591, we have

6A= [fpSy]+j{(fv -fp')$y + &c.}dx,

where the part outside the integral, being taken between fixed limits, is zero, and

accents denote total differentiation with regard to x. The path of minimum

action is found by equating the coefficient of dy to zero, Art. 591. This path is

therefore given by
/-/p'=0 ....................................... (1),

and the change of action in any varied path by

SA = ^f[fyy (8y)
2+ 2f!/p dySp + fpp (dp)^dx ..................... (2).

To find the path in Cartesian coordinates we integrate the equation (1). This

can only be effected when the form of the function
<f>

is given. The integration

presents only those difficulties which are discussed in treatises on differential

equations. We now proceed to find the change in the action given by (2).

To determine the sign of 5A, we write (2) in the form

dA = [\(&y)*]+ ^[(fvv -2\')(dy)* + 2(fyp -2\)5y8P +fpp (dp)*]dx ...... (3),

where the term outside the integral is zero, provided X does not become infinite

between the limits of integration.

Let y=F (x, clt c2) be the integral of (1), then changing the constants into c
l + a,

c2 + /3 where a, /3 are indefinitely small,

is also a solution of (1). We choose the constants clf c2 so that the curve y=F
passes through the limiting points A and B. Making the varied curve (4) also

pass through A, we have an equation to find /3/a. Hence

(dF dF B\
5y= a(+ "

)=u ............................. (5),
\dcl dc2 a.)

is the equation of a neighbouring path of minimum action beginning at A and

making a small arbitrary angle with the path AB, the magnitude of the angle

depending on that of a. If C is the first point of intersection of these two paths,
then u is not zero between A and C.

Differentiating (1) we see that dy=u satisfies the equation

Returning to the integral (3) let us choose X so that

(fyp -2\)u=-fppu
f

................................. (7).

Substituting in (6) we find
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the last term being obtained by substituting for u' from (7). This becomes

P= (/w,-2X) .............................. (8).

The quantity under the integral sign in (3) is therefore a perfect square. Remem-

bering (7) we see that

r .............................. (9)-

The value of X is by (7)

Hence in order that both X and the subject of integration in (9) may be finite

it i$ necessary that u should not vanish between the limits of integration. The

second limiting point B must therefore not be beyond C. It is supposed that v

and dvjdy are finite between the same limits. See Art. 648.

Supposing this condition to be satisfied, every term of the integral (9) is

positive if /, is positive from A to B. Since fpp= v (1 + jp
2
)"*, and the velocity v

is supposed to keep one sign throughout the motion, this condition also is satisfied.

The change of action caused by a variation of path is therefore always positive and

its amount is determined by (2) or (9).

This investigation can be applied to brachistochrones and may also be extended

to any cases in which the subject of integration, viz. f(x, y, p) t
is a function only

of the coordinates y, x, and the first differential coefficient. In order that the

course AB given by (1) should be a true minimum, no variation must exist which

can make 5A negative. The conditions for this are (1) the point B must not be

beyond C, as explained in Arts. 594, 648, (2) the differential coefficient dyjdp-
must be positive throughout the whole course AB.

If dy/dp
2 were negative for any portion PQ of the course given by (1), let us

vary the remaining portions AP, QB so that Sy is as nearly equal to u as we

please, the portion PQ being varied in some other manner. In this variation such

prominence is given to the negative elements of the integral (9) that 5A is made

negative. It is also evident from (7) that X is finite if <fY/fy-, d-fldpdy are finite.



A SWARM OF PARTICLES.

Note on Art. 414.

THE argument will be made more complete if we suppose that the boundary of

the swarm is an ellipsoid instead of a sphere. Owing to the manner in which the

forces of attraction depend on the shape of the swarm, the results for an ellipsoid

are not altogether the same as those for a sphere.

Taking the same axes as before, the coordinates of the projection of any particle

P on the plane of motion of the centre are r + , 77, while f is the distance of P
from that plane. Treating the ellipsoid as homogeneous and of density D, the

component attractions of the swarm at any internal point are A%, BTJ, C, where

A, B, C are functions of the ratios of the axes of the bounding ellipsoid and their

sum is 4irD.

The equations (1) of Art. 414 are slightly modified by having their last terms

replaced by - A, - By ; and instead of (3) we have

"+* =

The equation for f is evidently

Putting = acoa(pt + a), 17=6 Bin(pt + a), and =csin(qt + y) we find by pro-

ceeding as in Art. 414,

{p-(A-an*)}{fP-B}-4p*n*=0, 5
2 = n2+C ............... (III).

The condition for stability is therefore A > 3n2
.

In an ellipsoid A > B if the axis in the direction of is less than that in the

direction of 77. It follows that if the axis of is the least axis, A is greater for

an ellipsoid than for a sphere. The swarm is therefore more stable for an ellip-

soidal than for a spherical swarm provided the least axis of the ellipsoid is

placed along the radius vector from the sun.

Let us suppose that all the particles are describing the same principal oscillation.

The projections of their paths on the plane 77 are therefore given by = acos0,

77
= 6 sin 0, where =pt + a. These paths are coaxial ellipses described in the same

periodic time Sirfe, the semi-axes of any ellipse being a, 6. By substituting these

values of
, 77 in the second of equations (I), we find ~ =

^-5- ; it follows that all

the ellipses are similar to each other. There will therefore be no collisions between

the particles.
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The ratio of the axes of the ellipses is not altogether arbitrary. By using (HI)

we find

6)'
where A, B and therefore pa are known functions of the ratios of the axes of the

ellipsoid. We may deduce from the values of A
, B given in the theory of Attrac-

tions that Aa- is less or greater than Bb- according as a? is greater or less than 6*.

It then follows from this equation that in both the principal oscillations the axis

of the ellipsoid in the direction of the radius vector from the sun is less than the

axis of the ellipsoid in the direction of motion of the centre.

If /', O, R be any three particles describing similar co-axial ellipses in the same

time with an acceleration tending to their common centre, it is not difficult to

prove that the area of the triangle PQR is constant throughout the motion. Let

us apply this theorem to the motion of the projections of the particles on the

plane of 77. Joining adjacent triads of particles, we divide the whole area into

elementary triangles. If the swarm is homogeneous, the areas of these triangles

are initially equal and we see that they will remain equal throughout the

motion. The swarm will therefore remain homogeneous.

Consider next the motions of the particles perpendicular to the plane of 77.

These are harmonic oscillations and are all described in the same time 2r/<j.

The amplitude of each oscillation is the ordinate of the ellipsoid corresponding

to the ellipse described by the projection and this is constant for the same particle.

The distance between two adjacent particles moving in the same ordinate in the

same direction is increasing or decreasing according as they are approaching or

receding from the plane of 77. As there are as many particles approaching as

receding, the uniformity of the density is not affected by this motion.

When both the principal oscillations are being described simultaneously the

state of the motion becomes more complicated. The outer boundary is not strictly

ellipsoidal, being dependent on both the states of motion. Since also the rotations

in the principal oscillations are in opposite directions, we can no longer neglect

jllisions between the particles.

To take account of the collisions we must have recourse to a statistical theory

analogous to the kinetic theory of gases. But this would lead us too far from the

methods of this treatise.

m example of the application of the kinetic theory the reader is referred

to a memoir by O. H. Darwin, On the mecli i it ion* of a swarm of meteorites,

etc., I'hil. VY.i/M. 1889. He supposes a number of meteorites to be falling together
i con, lit ion of wide dispersion and to have not yet coalesced into a system of

a sun and planets. No account is taken of the rotation of the system.

Callandreau has discussed the case in which a comet, regarded as a spherical

swarm of particles, is heterogeneous, the density being a function of the distance

from the centre. The effect of a passage near Jupiter has also been taken into

account. See his Etude tur la thtorie des comitet pfriodiques. He considers it

probable that the periodic comets are undergoing a gradual disintegration and he

u out that accord in: vpothesis a few comets captured by the action

of Jupiter could bj repeated subdivisions produce all those known to exist. See

observatory, Feb. 1898.



LAGRANGE'S EQUATIONS.

Note on Art. 524.

THIS rule may be put into another form. We know that if L = T+ U+ C be the

Lagrangian function and 0, <j>,
&c. the coordinates, the equations of motion are

d_dL_dL ^^_^ &
dt d8'

~
dd

'

dt dip ~d<j>'

We now see that we may use the same equations, if we substitute

(2),

where M is any arbitrary function of the coordinates 6, </>,
&c. which we may find

suitable when solving the equations.

The expression for T2 differs from T only in the fact that the differential co-

efficients are taken with regard to a different independent variable, which has been

represented by T. Thus

When the equations have been solved the paths of the particles are found by

eliminating T without enquiry into its meaning.

The equation of energy is supposed to be T- U=C; the constant C is therefore

known when the initial values of 6, <f>, &c., 6', <f>',
&c. are given.

We notice that one solution must be analogous to that given by the principle

T
of vis viva. We therefore have ^j

= M(U+C). Since this must agree with the

equation T=U+C, it immediately follows that T=T^\ ,
TZ=M*T. The

relation between T and t is therefore Mdr= dt.

When the paths of the particles are alone required, we may eliminate the time

from the Lagrangian equations by using a new function instead of the Lagrangian

function.

In this method we choose some one coordinate 6 to be the independent variable

and regard the others 0, ^, <fec. as unknown functions of 6 whose forms are to be

determined by the altered equations of motion. Let

T=i^n 0'2+ ^ 120V +^0'2+^0V' + .................. (4),

where accents denote differential coefficients with regard to the time. Let also

Zv=^u + ^i2<h+^220i2+ ^230i'Ai+ ..................... (5),

where the suffixes of <p, \f/,
&c. here denote differentiations with regard to the new

independent variable 6.

.
dT dT' dT dT'"^' '

= e ........................... (6) '



LAGRANGE'S EQUATIONS. 409

The equation of energy gives

d dT dT dU .

The Lagrangian equation ,

- T- = becomes
tit dip dip a<p

d
l(U+C\*dT'\ _dT U+C dU~ +

\ T' d$\\ r **J
~

<ty r
where all the differential coefficients are partial except the dfdd.

Remembering that U is not a function of
<f> 1 , this becomes

If then we use Q={(U+C) T'fi as if it were the Lagrangian function and

regard 6 at the independent variable, we have the equations

d dQ _dQ

from which the paths may be found.

This result follows easily from the theorem of Art. 524 by putting dr= d0, and

we have here reproduced so much of that article as is required for our present

purpose. If dr=dd
t
we have Md0= dt and therefore by (7) of this note

(T
\*

J
. Substituting in (2) the Lagrangian function becomes

L = 2{(U+ C)T'}*.

We notice that however the expressions for the vis viva and the work function

may be different in different problems, yet so lon<i H* the product (U+C) T' remains

unchanged, the path* (ire determined by the sum? relation* between the coordinates

0, <f>, <*c.

Since in the Lagrangian equations, the letters 0, 0, Ac. represent arbitrary

functions of the quantities or coordinates which determine the position of the

system, it is evident that we have here taken as the independent variable any

arbitrary function of the coordinates.

// tome one coordinate, say 0, is absent from the product (U+C)T
f

(though T
contains the differential coefficients of 0), we see that one solution of the equations

of motion is

0^
= 0, /.

(lM-C)*^=a.. (10),

If C is arbitrary, the product Q cannot be

independent of unless T and U are separately independent of 0. But when C
is given by the initial conditions this limitation is not necessary. If we substitute

:-,
and r the values given by (6) and (7) this integral becomes dr/<ty' = 2o,

> is the same as that obtained in Art. 521.

We may deduce this extension directly from the Lagrangian equations. Suppose

rJf {^n** + *c.}, U+C=^f(0, +, Ac.),

where If is a function of 0, 0, d-c. while /<, Ac. are not functions of 0. In this

the product T(U+C) is not a function of 0. The Lagrangian equation
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for gives

. _
'~dtd<t>'- d<(> M (2

If then the initial circumstances are such that the equation of energy is

As a simple example, consider the case of a projectile moving under the action

of gravity. We have T=%(x'* + y'*), U=-gy. Since the product of these is

independent of x we choose some other coordinate as the independent variable.

Writing x
l
= dxjdy we have

This by an easy integration leads to the parabola (x
-

/3)
2 = 4a2

(y + C - a2
)

.

The elimination of the time from the Lagrangian equations is given by Painlev6

in his Lemons sur Vint&gration des equations differentielles de la Mecanique, 1895.

By an application of the principle of least action he obtains the function here

called Q and writes the equations in the typical form ---
=-?- = -

. From these
dq^ dq'n dqn

he deduces (page 239) that the Lagrangian equations may be written in the two

forms

d_dT__dT = dU A*r'_^L = o
dt dq' dq

~
dq

'

dr dq
7

dq
~

'

where T-T(U-\-C) and dr=(U+C)dt. This special result follows from that

given at the beginning of this note by putting l/If= U+C. Its importance lies in

the fact that by this change the motion is made to depend on that of a system moving
under no forces.

The elimination of the time from Lagrange's equations is also given by Darboux

in his Lemons sur la theorie ge"ne"rale des surfaces, Art. 571, 1889. He expresses his

results in the same form as Painleve.

We may obtain an extension of the theorem (2). In such problems as those

discussed in Art. 255 the Lagrangian function takes the form

L=L2 +L1 + L ................................... (12),

where Ln is a homogeneous function of 6', <f>', &c. of the order n, the coefficients

being functions of 6, <f>,
Ac. but not of t. We then find as in Art. 512, Ex. 3, that

the equation of energy becomes

L2 -L = C ....................................... (13).

Proceeding as in Art. 524, we change dt into dr and write

L=%F+LI+M(LO+C) .. ... (14).
JXL

We may now use this as the Lagrangian function.
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The numbers refer to the articles.

ACCELERATION. Components in two dimensions, 38. Moving axes, 223. Three

dimensions, 490. AC. Moving axes, 498. Hyper acceleration, 233. Accele-

rating forcf. 68.

ADAMS, J. C. Motion of a heavy projectile, 178. The true and mean anomalies,

347. Proof of Lambert's theorem, 352. Resistance to comets, 386.

ALGOL. Two problems, 405.

KKT. Problem on the resistance to a projectile, 176, Ex. 4.

AMBIGUOUS SIONH. In rectilinear motion Ac., 97, 100. In Killer's and Lambert's

theorems in elliptic motion, 350, 353.

ANOMALY. Defined, 342. Various theorems, 346.

APSE. Defined, apocentre and pericentre, 314. Apsidal angle and distances found,

367, 422, when independent of the distance, 368, 370. Second approxima-

tions, 370, 426, 427. Conditions there are two, one, or no apsidal distances,

430-433. Kqual apsidal distances, 434, apsidal circle, 434. 436. Apsidal

boundaries, 441. Conical pendulum, 564.

ASYMPTOTIC CIRCLES. In central orbits, 434, 446.

ATWOOD. Machine, 60. Constant of gravity, 66.

BACKLUXD. Resistance to Encke's comet, 385, note.

BALL. History of mathematics, 591, note.

BARRIER CURVES. Boundaries of the field, 299. In brachistochrones and least

action, 649.

BASHFOKTH. Motion of projectiles, 169. Law of resistance, 171.

BERTRAND. General and particular integrals, 245. Law of gravitation, 393, K\.

:'. The apsidal angle, 426. Closed orbits, 428. Brachistochrones, 610.

BESANT. On infinitesimal impulses, 148, note.

BONNET. Superposition of 273.

BRACHISTOCHBONES. In apace 591, on a surface, 607, on a cone, cylinder, Ac., 612.

Vertical force, 601. Central force, 606. U. lution to the free path, 598, 599,

Of. Case in which thr r<.nstnu<tion fails. 649. A conic, 605, Ex. 1, 606,

Ex. 8, 6. A cycloid, 601, Ac.

BRYANT. True and mean anomalies, M7, Ex. 5.

BURNBIDE AND PANTOS, quoted, 489, note.

CALLANDRKAU. Encke's comet, 880. Spherical swarm, 414. The disintegration of

comets, page 407. On Tisserand's cnt< i i<m, 416.

CARDIOID. A central orbit, 320.

CATENARY. A tautochrone, 211. A brachistochrone, 806, Ex. 7.

CAUCHY. Convergency of the series in Kepler's problem, 488.
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CAYLET. Infinitesimal impulses, 160, Ex. 3. Elliptic functions, 218, 220, 364.

Lambert's theorem, 302, note. Motion in an ellipse with two centres of

force, 356, Ex. 4.

CENTRAL FOBCE. Elementary theorems, Ac., 306. Solution by Jacobi's method in

three dimensions, 646. Locus of centres for a given orbit, 421. Force = /mn ,

classification of the orbits, 436. Stability, 439. Solution when the velocity

is that from infinity, 360, time, 362, disturbed path, 363, Ex. 3. The

inverse cube, rectilinear motion, 100, lemniscate, 190, Ex. 11, Cotes' spirals,

366. Inverse fourth, fifth, &c. 364, 366, &c.

CENTRIFUGAL FORCE. Explained, 183.

CHALLIS. Infinitesimal impulses quoted, 148, note.

CHORDS OF QUICKEST DESCENT. Smooth and rough, 143, &c.

CIRCLE. Motion of a heavy particle, time just all round, 201, Ex. 1. Time in any

arc, 213. Continuous and oscillatory, 216. Coaxial circles, 219. Central

force, 318, 321, 190, Ex. 7. Parallel force F=yu/?/
3

, 323, 462. Nearly circular

orbits, 367, second approximation, 369, 370, least action, 653. When the

force is infinite, 466. A rough circle, 192, a moving circle, 198. Geodesic

circles, 648, 571. Two centres of force, 194.

CLERKE. History of Astronomy quoted, 385, note.

CONIC. As a central orbit with any centre, there are two laws of force, 456. Time,

454. Elements of the conic, 457. Classification, 460. A corresponding
curve on an ellipsoid, 572. A brachistochrone, 606, Ex. 3, 4.

CONICAL PENDULUM. The cubic, 555. Rise and fall, 558. Tension, 557. Radius

of curvature, 559. Projection a central orbit, 560. Time of passage, 562.

Apsidal angle, 564.

CONJUGATE FUNCTIONS. Relation between the motions, 633, between the pressures,

635.

CONSERVATIVE SYSTEM. Explained, 181. Forces which disappear in the work

function, 248. Oscillations, 294.

CONVERGENCY. The series in Kepler's problem, 488, &c.

CORIOLIS. Theorem on relative vis viva, 257.

CRAIG. Particle on an ellipsoid, 568. Treatise on projections referred to, 609.

CURVE. Motion in two dimensions, fixed, 181, rough, 191, moving, 197. Three

dimensions, fixed, 626, moving, 528, changing, 533.

CYCLOID. A tautochrone, 204, theorems, 206, rough, 212. Resisting medium, 210.

A brachistochrone, 601, 602, theorems, 603, &c.

CYLINDERS. Motion on, 644. Brachistochrones, 612, Ex. 3.

D'ALEMBERT. The principle, 236.

DARBOUX. The apsidal angle, 427. Force in a conic, 450. Relation of brachisto-

chrones to geodesies, 609. Elimination of the time in Lagrange's equations,

page 410.

DARWIN. Periodic orbits, 418, note. Swarm of meteorites, page 407.

DEGREES OF FREEDOM. Defined, 252.

DESPEYRONS. Problem on time in an arc, 203, Ex. 1.

DIMENSIONS. General theory, 151. In central orbits, 316.

DIRECT DISTANCE. With this law of force, rectilinear motion with friction, 125,

and resistance, 126. Time in an arc of lemniscate, 201, Ex. 2, 3. Central

force, &c., 325.

DISCONTINUITY. Of friction, 125, 191. Of resistance, 128. Of a central force,

135. Of orbits, 467, &C. Of brachistochrones, 604, 649.
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DOUBLE ANSWERS. In rectilinear motion, 98. In two dimensions, 266.

TIVE FORCE. Defined, 68, 235. Resultant effective force and couple, 239.

Virtual moment, 507.

ELLIPSOID. Cartesian coordinates, 568, a case of integration, 569, 575. Elliptic

coordinates, 576, a case of integration, 578, 582. Spheroidal coordinates,

584. Central force, 570, 571, 572. Motion on a line of curvature, 583.

TIC COORDINATES. Two dimensions, 585, three, 676. Translation into

Cartesian, 576, 580.

I.i.Lii-Tic MOTION. Time found, 342, 345. Disturbed by impulses, 371, Ac., by
continuous forces, 376. Change of eccentricity and apse, Ac. by forces, 380,

by a resisting medium, 383. Kepler's problem, 473, Lagrange, 479, Bessel,

480. Elliptic velocity, 397.

.esistance to a comet, 385.

.<Y. Principle of, 250. In central forces, 313. See also vis viva.

EPICYCLOID. A central orbit, 322. Force infinite, 472, Ex. 2. A tautochrone, 211.

LAB SPIRAL. Pressure, 190, Ex. 8. Moving spiral, 198, Ex. 2. A tauto-

chrone, 211. A central orbit, 319, particle at centre of force, 470.

EULER. Problem on a rebounding particle, 305, Ex. 4. On motion in a parabola,

350. With two centres of force, 585, note. Lemniscate, 201, Ex. '2.

Brachistochrones with a central force, 591, note.

DIITEREXCES. Problems requiring, 305.

FORSYTH. Differential equations, 243. Theory of functions, 489.

FOUCADLT. Pendulum referred to, 57, 627. Theory, 624, 626.

FRICTION. Bough chords with gravity, 104, centre of force, 133. Bough curve, 191.

Discontinuity, 125, 191.

FROST. Elliptic velocity, 397. Singular points in a circular orbit, 466.

GAUSS. Coordinates, 546, 547.

GEODESIC. Line, 639. Circles on ellipsoid, 548. Boberts, 571. Brachistochrones

Bertrand, 610, Darboux, 609.

GLAISHER. Time in an ellipse, 347, Ex. 1, 476. Force in a conic, 460, note.

GRAY AND MATHEWS. Treatise on Bessel functions, 286, Ex. 9. Kepler's problem,
481.

GREKXHILI.. An integral, 116. Motion of projectiles, 169. Cubic law of

resistance, 177. Elliptic functions, 213, note, 364. Paths for a central

force MM", special values of n, 366, note. Stability of orbits and asymptotic
circles, 429, note, Conical pendulum, 555, note.

GROUPING. Of trajectories of a particle. Theory, 636, 638. Special cases, 159,

330, 339, Ac.

GUOLIELMINI. Experiments on falling bodies, 627.

HAERDTL. Traces path of a planet in a binary system, 418, E
HALL, ASAPH. Satellites and mass of Mars, 403. Singular points in central orbits,

465, note.

HALL MAXWELL. On Algol, 406, Ex. 1

HAN. Law of gravitation, 393, Ex. 1. Force in a conic, 400, note.

HAMILTON. Law of force in a conic, 463. Hodograph, 394.

HARMONIC OSCILLATION. Definition, frequency, amplitude, Ac., 119.

HELIX. Heavy particle on, fixed, 627 534.

HfcLiroiDE. Motion on, Liouville'a solution, 583, F.x. 4, another problem, 643,

Ex.5.

HEMCHBI.. Disturbed elliptic motion, 379. Algol, 406.
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HILL. Stability of the moon's orbit, 417.

HODOORAPH. Elementary theorems, 29. Central orbits, 394. Itself a central

orbit, 398.

HOPKINS. Infinitesimal impulses, 148, note.

HOBSK-POWKR. Denned, 72.

HUYOENS. Terminal velocity, 111.

IMPULSES. How measured, 80. Infinitesimal, 148. Smooth bodies, 83, &c.

INERTIA. Explained, 02, 183, note. Moment of, 241.

INFINITE. Force, 100, 466. Subject of integration infinite, 99, 202.

INGALL. Motion of projectiles quoted, 169.

INITIAL. Tension and curvature, 276, &c. String of particles, 279. Starting from

rest, 280. Initial motion deduce from Lagrange's equations, 617. Three

attracting particles fall from rest, 284, Ex. 6.

INTEGRALS. Of the equations of motion. Two elementary, 74, 75. Rectilinear

motion, 97, 101. General and Particular integrals, 244, 245. Summary of

methods in two dimensions, 264. Integrals of Lagrange's equations, 521

and page 408, Liouville's, 522. A general case in three dimensions, 497, in

Jacobi's method, 645.

INVERSE SQUARE, law of. Bectilinear motion, 130. Particle falls from a planet,

134. Central force, 332, &c. See Time.

INVEBSION. Of the motion of a particle, 628. Of the pressure on a curve, &c., 631.

Of the impressed forces, 631, 632. Calculus of variations, 650, Ex. 2.

JACOBI. Integral for a planet in a binary system, 255, 415, 417. Case of solution

of Lagrange's equations, 523. Two centres of force, 585, note. Method of

solving dynamical problems, 640, 644. Criterion of max-min in the calculus

of variations, 594, 648.

JELLETT. On brachistochrones, 591, note, 650, Ex. 1.

KEPLER. The laws, 387. Law of gravitation in the solar and stellar systems, 390.

Kepler's problem, 473.

KORTEWEO. Stability, asymptotic circles, &c., 429, note.

LACHLAN. Treatise on modern geometry referred to, 219.

LAISANT. On a case of vis viva, 258.

LAORANOE. Energy test of stability, 296. Conical pendulum, 555, note. Two
centres of force, 585, note.

LAORANOE'S EQUATIONS. Proof, 603, &c. Elementary resolutions deduced, 512.

Ex. 1, 2; vis viva deduced, Ex. 3. Small oscillations, 513. Initial motion,

517. Methods of solution, 521, and page 408. Change of the independent

variable, 524, and page 408. Transference of a factor, 524. Elimination of

the time, page 409.

LAMBERT. Time in an elliptic arc, 352.

LAME. On curvilinear coordinates, 525.

LAPLACE. On three attracting particles, 406. Series for longitude of a planet, <fec.,

476. Other expansions, 487, Ex. 3, 4, 5. Convergency, 488.

LARMOR. Calculus of variations, 691, note. Inversion, 628, note.

LAWS. Of motion, 51. Of resistance, 171. Of Kepler, 387.

LEAST ACTION. Principle of, 646. A minimum, 647, 648. Case when there is no

fre path, 649. Relation to brachistochrones, 650, &c. Parabola, ellipse

and any central orbit, 651. Terms of the second order, 653, 654.

LEOENDRE. Central orbits, 356, note. Two centres of force, 685, note.

LEJEUNE DIRICHLET. Energy test of stability, 296, note.
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LEMXISCATE. Time in an arc, 201, Ex. 2, 3. Centre of force in the node, 320.

Two centres of force, pressure, 190, Ex. 11
; free, 687, Ex. 4. The pedal a

central orbit, 363, Ex. 2. A brachistochrone, 606, Ex. 5.

LEVERRIKR. True and mean anomalies, 347.

LIMITING VELOCITY. Explained, ill. Theorems, 115, 116, Ac.

\B EQUATIONS. Theory, 118. Elementary cases, 122. See Oscillations.

LIOUVILLE. The line arrangement of three attracting particles, 406, note. Solution

of Lagrange's equation, 522. A particle on an ellipsoid, 568, note. Two
centres of force, 585, note. Solution by Jacobi's method of a class of

problems, 645.

LLOYD AND HADCOCK. Treatise on Artillery, &c., 169, note.

MAGNIFICATION. Rectilinear motion, 139. In two dimensions, 303. Central orbits,

369.

MASS. Units, 63. Problems on bodies without mass, 267. Of a planet, 403.

MAXWELL. Laws of motion quoted, 51.

MEAN DISTANCE. Of a planet. Mean value of rn
, 344.

MILLER. Comparison of standards, 63.

MOMENTUM. Linear, 54, 79. Angular, 79, 492. Conservation of linear and

angular, 92. Equation of moments in two dimensions, 259, in central

forces, 306, in three dimensions, 492.

MOVING AXES. In two dimensions, 223. Geometrical relations between relative

and actual path, 229. Oblique axes, 232. In three dimensions, 498, deduced

from Lagrange's equations, 512, Ex. 2. Moving curves, 197. Moving
central orbits, 359.

MUIBHEAD. On the laws of motion, referred to, 51, note.

MAYKVSKI. The law of resistance, 171.

NEWTON. Laws of motion, 51. Constant of gravity, 67. Law of elasticity, 83.

Two attracting spheres, 134, Ex. 3. Central forces, a circle, 318; a conic

about any centre, 450, a moving orbit, 359.

NrvEN. Motion of projectiles, 169, note.

ORBITS. Bertrand on closed orbits, 428. Orbits near the origin, 437, at a great

distance, 438. Classification of orbits for F=nu*, 436. A central orbit is a

brachistochrone, 606.

ORTHOGONAL COORDINATES. Examples and Lame's generalization, 525.

OSCILLATIONS. Small rectilinear, 137. Problems, 188. Small curvilinear, 199,

finite, 200. One degree of freedom, 285, two, 287. Principal oscillations,

293. Of suspended putirl. s, 300. About a steady motion, 304. Insuf-

ficiency of a first approximation, 302. Of a series of n particles, 305. Use

of Lagrange'a equations, 513.

PAINLEVE. Particle on an ellipsoid, 568, note. Elimination of time from Lagrange's

equations, page 409.

PARALLEL FORCES. Constant, see Projectile. Variable a conic described, 823, 452.

PARALLELOGRAM LAW. Velocity, 4, acceleration, 28, angular velocity, 48. Vectors,

222.

;t. Laplace's differential equation, 248. Solution in some cases, Mt, Ac.

Central forces, 809.

PENDULUM. Change of place, 907, Ac. See Circle and Conical Pendulum. Rotation

of the earth, 621, 624, Ac.

ST TO POI under gravity, 159. Under a central force, 330, 339.

A brachistochrone, 691. Least action, 646.
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PoiB80N. Expansion of true anomaly, &c., 487, Ex. 3. Effect of the rotation of

the earth, 627.

PRESSURE. Two dimensions, 184. Three dimensions, 526, Ac., 536, 552, 560, Ac-.

A constrained motion may be free, 190, 193, 194, &c., 529, &c. Does the

particle leave the curve? 195.

PROJECTILES. In vacuo, 154, by Jacobi's method, 645. Resistance KV, 162.

Resistance KT, 168, cases of n= 2, 172, 7i= 3, 177, n=0, 176, Ex. 5. Given

trajectory find the resistance, 179. Rotation of the earth, high and flat

trajectories, 621. Deviation from parabolic motion, 623.

PUISSEUX. The spirals of, 322.

RECIPROCAL SPIRAL. A central orbit r$=a, 358. Radial velocity constant, 358.

Arrival at the centre of force, 472.

REICH. Experiments at Freiberg, 627.

RELATIVE MOTION. Acceleration relative to a moving point, 39, 276 ; to a moving

curve, 197. Relative and actual paths, 229. Coriolis, 257. Three dimen-

sions, relative to the meridian plane, 495, to a moving curve, 530.

REPRESENTATIVE PARTICLE. Defined, 295.

RESISTING MEDIUM. Rectilinear motion, light particle, 102. Heavy particle on a

chord, 107, falls freely, 115, &c. Curvilinear motion of a heavy particle,

162180. Law of resistance, 171. Resistance in the solar system, 385.

ROBERTS, R. A. Integral calculus referred to, 116.

W. B. W. Motion on an ellipsoid, 568, 571.

ROGER. On brachistochrones, 591, note, 612, Ex. 3.

ROUCHE. Convergence in Kepler's problem, 488.

SALMON. Solid geometry referred to, 577, 610.

SANG. Heavy particle on a circle, 217.

SCHIAPARELLI. Disintegration of comets, 414, note.

SECOND APPROXIMATIONS. Rectilinear motion, 141, curvilinear, 202, 302, 303.

Central orbits, 367, 426. Conical Pendulum, 662, 564.

SERRKT. Lemniscate, 201, Ex. 2. Two centres of force, 585, note.

SIMILAR. Configurations, 265, Ex. 9, 10. Line arrangement of three particles, 409,

&c. Triangle arrangement, 407.

SINGULAR POINTS. Of infinite force, 466. Arrival at the centre of force, 468.

Special cases, 470, 472.

SLEBSER. Acceleration for moving axes, 500.

SPHERES. Impacts of smooth spheres, 83, &c. Energy lost, 90. Impulses of

spheres inside moving vessels, tied by strings, &c., examples, 94. Motion of

a point on a sphere, 542, &c., 555, Ac.

STABILITY. Energy test, 296. Of oscillations, 287. When the law of force is the

inverse /cth, 298. Of the moon's orbit, 417, 418. Of central orbits, 439, 444.

STOKES. Resistance to comets, 386. On the figure of the earth, 619, Ex. 5.

STONE. Longitude is elliptic motion, 476.

STRING OF PARTICLES, n heavy suspended particles, 305. Initial tensions, &c., 279.

Train and engine, 150, Ex. 5, 305, Ex. 3. Pulleys, 78, Ex. 10. String passes

over a surface, 545.

SUFFICIENCY. Of the equations of motion, 243. Insufficiency of a first approxi-

mation, 302.

SUPERPOSITION. Of motions. Theory, 271 275.
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SURFACE. Small oscillations of a heavy particle about lowest point, 301. About

steady motion, 553. Motion on any surface, 535, &c. Cylinders, 54*.

Strinp, 545. Developable, 549. Of revolution, 541, the zones, 550, &c.

Paraboloid, 554. Sphere, 542, 555. Ellipsoid, 568.

SWABM. Stability of a spherical swarm, 414. Ellipsoidal swarm, page 406.

SYLVESTKK. Motion in a circle 321, with two centres of force, 194.

TAIT. Relation of brachistochrones to free paths, 591, 650. Brachistochrone

when the velocity varies as the distance from the axis of Z, 612, Ex. 4.

Least action in elliptic orbits, 651.

TAUTOCHRONE. Linear equation, 119. Examples of tautochronous curves, 211.

THREE ATTRACTING PARTICLES. Initial radius of curvature, 284, Ex. 6. Triangle

arrangement, 407. Stability, 408. Line arrangement, 409. Unstable, 412.

;on from rest in either arrangement, 413, 284, Ex. 6.

TIME. In an arc, 199, 200. In a central orbit, ellipse, 342, hyperbola, 348,

parabola, 349. Ellipse of small eccentricity, 345. Euler's and Lambert's

theorems, 350, 352. Ambiguities in sign, 350, 353.

TISSERAND. Comet in a resisting medium, 384, &c. Disintegration, 414. Criterion

of the identity of a comet, 415. Proof of a theorem of Laplace, 487, Ex. 4.

TISSOT. The conical pendulum, 555, note.

THOMSON AND TAIT. Laws of motion, 51. Orthogonal surfaces of trajectories, 638.

STER. Error in a Newtonian problem, 134, Ex. 3. On brachistochrones, 604.

TOWN-SEND. Memoir on brachistochrones, 591, note.

TRANBON. On hyper-acceleratiou, 233.

Two ATTRACTING PARTICLES. Orbit and time, 399. Mass of a planet, 402.

Two CENTRES OF FORCE. A circle is a possible orbit -F=/iu
5

, 194. Ellipse described

F=fiu2
, two dimensions, 355, three, 529. F=/jui

3
, lemniscate, 587, Ex. 4.

Liouville's general solution, 585, &c. In three dimensions, 588.

UNIFORM. Velocity and acceleration, 2, 15, Ac. Angular velocity, 41. Defini-

tion, 53.

UNITS. Space and time, 46. Mass, 63. Force, 64. Work, 71. Horse-power, 72.

VELOCITY. Components, 11. Moment of, 6 9. In a central orbit from infinity

and to the origin, 312.

VILLARCEAU. Law of gravitation, 390, note. Force in a conic, 450, note.

Vis VIVA. See Energy. Defined, 69. Constrained particle, 184. Principle for a

fixed field, 246, rotating field, 255. Vis Viva of a rigid body, 253. Coriolis

on relative vis viva, 257. Deduced from Lagrange's equations, 512, Ex. 3.

WORK. Defined, 70. Kate of doing work, 72. Work function, 185. Central

force, 186. ElaHtic string, 187. KiT dive forces, 507.

WORMH. Experiments on Foucault's pendulum, 627.

WYTHOFF. Memoir on dynamical stability, 406, note.

YOCHO. Rule for the attraction of table land, 208.

ZENOER. Mean and true anomalies, 847, Ex. 2.
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